
Java Basics

Rahul Deodhar
rahuldeodhar@gmail.com

www.rahuldeodhar.com
+91 9820213813

1

Chapter 3 - Java Basics

n  First Java Program
n  Comments
n  Class Name / Source Code Filename
n  main Method Heading
n  Braces
n  System.out.println
n  Compilation and Execution
n  Program Template
n  Identifiers
n  Variables
n  Assignment Statements
n  Initialization Statements

1

Chapter 3 - Java Basics

n  Numeric Data Types – int, long
n  Numeric Data Types – float, double
n  Constants
n  Arithmetic Operators
n  Expression Evaluation
n  Increment and Decrement Operators
n  Compound Assignment Operators
n  Type Casting
n  Character Type - char
n  Escape Sequences
n  Primitive Variables vs. Reference Variables
n  String Basics
n  String Methods:

n  equals, equalsIgnoreCase, length, charAt
n  Input - the Scanner Class

2

First Java Program

/***************************************
* Hello.java

* John Dean

*

* This program prints a hello message.

***************************************/

public class Hello

{

 public static void main(String[] args)

 {

 System.out.println("Hello, world!");

 }

} // end class Hello

3

Comments

n  Include comments in your programs in order to make them more
readable/understandable.

n  Block comment syntax:
/* ... */ (Note: The /* and */ can optionally span multiple lines)

n  One line comment syntax:
// …

n  Commented text is ignored by the compiler.

n  Style requirement: Include a prologue section at the top of every
program. The prologue section consists of:

n  line of *'s
n  filename
n  programmer's name
n  blank line
n  program description
n  line of *'s
n  blank line

4

Class Name / Source Code Filename

n  All Java programs must be enclosed in a class. Think
of a class as the name of the program.

n  The name of the Java program's file must match the
name of the Java program's class (except that the
filename has a .java extension added to it).

n  Proper style dictates that class names start with an
uppercase first letter.

n  Since Java is case-sensitive, that means the filename
should also start with an uppercase first letter.

n  Case-sensitive means that the Java compiler does
distinguish between lowercase and uppercase letters.

5

main Method Heading

n  Memorize (and always use) public class prior to your class
name. For example:
public class Hello

n  Inside your class, you must include one or more methods.
n  A method is a group of instructions that solves one task. Later

on, we'll have larger programs and they'll require multiple
methods because they'll solve multiple tasks. But for now, we'll
work with small programs that need only one method - the main
method.

n  Memorize (and always use) this main method heading:
public static void main(String[] args)

n  When a program starts, the computer looks for the main
method and begins execution with the first statement after the
main method heading.

6

Braces

n  Use braces, { }, to group things together.
n  For example, in the Hello World program, the top and

bottom braces group the contents of the entire class,
and the interior braces group the contents of the
main method.

n  Proper style dictates:
n  Place an opening brace on a line by itself in the same column

as the first character of the previous line.
n  Place a closing brace on a line by itself in the same column

as the opening brace.

7

System.out.println

n  To generate output, use System.out.println().
n  For example, to print the hello message, we did this:

System.out.println("Hello, world!");

n  Note:
n  Put the printed item inside the parentheses.
n  Surround strings with quotes.
n  Put a semicolon at the end of a System.out.println statement.

n  What's the significance of the ln in println?

8

Compilation and Execution

n  To create a Java program that can be run on a
computer, submit your Java source code to a
compiler. We say that the compiler compiles the
source code. In compiling the source code, the
compiler generates a bytecode program that can be
run by the computer's JVM (Java Virtual Machine).

n  Java source code filename = <class-name> + .java
n  Java bytecode filename = <class-name> + .class

9

Identifiers

n  Identifier = the technical term for a name in a
programming language

n  Identifier examples –
n  class name identifier: Hello
n  method name identifier: main
n  variable name identifier: height

n  Identifier naming rules:
n  Must consist entirely of letters, digits, dollar signs ($), and/or

underscore (_) characters.
n  The first character must not be a digit.
n  If these rules are broken, your program won't compile.

10

Identifiers

n  Identifier naming conventions (style rules):
n  If these rules are broken, it won't affect your program's

ability to compile, but your program will be harder to
understand and you'll lose style points on your homework.

n  Use letters and digits only, not $'s or _'s.
n  All letters must be lowercase except the first letter in the

second, third, etc. words. For example:
 firstName, x, daysInMonth

n  Addendum to the above rule – for class names, the first
letter in every word (even the first word) must be uppercase.
For example:
StudentRecord, WorkShiftSchedule

n  Names must be descriptive.

11

Variables

n  A variable can hold only one type of data. For example,
an integer variable can hold only integers, a string
variable can hold only strings, etc.

n  How does the computer know which type of data a
particular variable can hold?
n  Before a variable is used, its type must be declared in a

declaration statement.

n  Declaration statement syntax:
<type> <list of variables separated by commas>;

n  Example declarations:
String firstName; // student's first name
String lastName; // student's last name

int studentId;

int row, col; Style: comments must be aligned.

12

Assignment Statements

n  Java uses the single equal sign (=) for assignment statements.
n  In the below code fragment, the first assignment statement

assigns the value 50000 into the variable salary.
int salary;
String bonusMessage;
salary = 50000;
bonusMessage = "Bonus = $" + (.02 * salary);

n  Note the + operator in the second assignment statement. If a +
operator appears between a string and something else (e.g., a
number or another string), then the + operator performs string
concatenation. That means that the JVM appends the item at
the right of the + to the item at the left of the +, forming a new
string.

Commas are not allowed in numbers.

string concatenation

13

Tracing

n  Trace this code fragment:
int salary;
String bonusMessage;
salary = 50000;
bonusMessage = "Bonus = $" + (.02 * salary);

System.out.println(bonusMessage);

salary bonusMessage output

n  When you trace a declaration statement, write a ? in
the declared variable's column, indicating that the
variable exists, but it doesn't have a value yet.

14

Program Template

n  In this chapter's slides, all of the code fragment
examples can be converted to complete programs by
plugging them into the <method-body> in this program
template:
/**
* Test.java
* <author>
*
* <description>
***/

public class Test
{
 public static void main(String[] args)
 {
 <method-body>
 }
} // end class Test

16

Initialization Statements

n  Initialization statement:
n  When you assign a value to a variable as part of the variable's

declaration.

n  Initialization statement syntax:
<type> <variable> = <value>;

n  Example initializations:
int totalScore = 0; // sum of all bowling scores
int maxScore = 300; // default maximum bowling score

17

Initialization Statements

n  Example initializations (repeated from previous slide):
int totalScore = 0; // sum of all bowling scores

int maxScore = 300; // default maximum bowling score

n  Here's an alternative way to do the same thing using
declaration and assignment statements (instead of
using initialization statements):
int totalScore; // sum of all bowling scores

int maxScore; // default maximum bowling score

totalScore = 0;

maxScore = 300;

n  It's OK to use either technique and you'll see it done
both ways in the real world.

18

Numeric Data Types – int, long

n  Variables that hold whole numbers (e.g., 1000, -22)
should normally be declared with one of these integer
data types – int, long.

n  Range of values that can be stored in an int variable:
n  ≈ -2 billion to +2 billion

n  Range of values that can be stored in a long variable:
n  ≈ -9x1018 to +9x1018

n  Example integer variable declarations:
int studentId;

long satelliteDistanceTraveled;

n  Recommendation: Use smaller types for variables that
will never need to hold large values.

19

n  Variables that hold decimal numbers (e.g., -1234.5,
3.1452) should be declared with one of these floating-
point data types – float, double.

n  Example code:
float gpa;

double bankAccountBalance;

n  The double type stores numbers using 64 bits
whereas the float type stores numbers using only 32
bits. That means that double variables are better than
float variables in terms of being able to store bigger
numbers and numbers with more significant digits.

Numeric Data Types – float, double
20

n  Recommendation:
n  You should normally declare your floating point variables with the

double type rather than the float type.
n  In particular, don't use float variables when there are calculations

involving money or scientific measurements. Those types of calculations
require considerable accuracy and float variables are not very accurate.

n  Range of values that can be stored in a float variable:
n  ≈ -3.4*1038 to +3.4*1038

n  Range of values that can be stored in a double variable:
n  ≈ -3.4*10308 to +3.4*10308

n  You can rely on 15 significant digits for a double variable, but
only 6 significant digits for a float variable.

Numeric Data Types – float, double
21

n  Assigning an integer value into a floating-point
variable works just fine. Note this example:
double bankAccountBalance = 1000;

n  On the other hand, assigning a floating-point value
into an integer variable is like putting a large object
into a small box. By default, that's illegal. For
example, this generates a compilation error:
int temperature = 26.7;

n  This statement also generates a compilation error:
int count = 0.0;

Assignments Between Different Types
22

n  A constant is a fixed value. Examples:
n  8, -45, 2000000 : integer constants
n  -34.6, .009, 8. : floating point constants
n  "black bear", "hi" : string constants

n  The default type for an integer constant is int (not
long).

n  The default type for a floating point constant is
double (not float).

Constants
23

Constants

n  This example code generates compilation errors.
Where and why?
float gpa = 2.30;

float mpg;

mpg = 50.5;

n  Possible Solutions:
n  Always use double variables instead of float variables.

or

n  To explicitly force a floating point constant to be float, use
an f or F suffix. For example:
float gpa = 2.30f;
float mpg;

mpg = 50.5F;

24

Constants

n  Constants can be split into two categories: hard-
coded constants and named constants.

n  The constants we've covered so far can be referred to
as hard-coded constants. A hard-coded constant is an
explicitly specified value. For example, in this
assignment statement, 299792458.0 is a hard-coded
constant:
propagationDelay = cableLength / 299792458.0;

n  A named constant is a constant that has a name
associated with it. For example, in this code fragment,
SPEED_OF_LIGHT is a named constant:
final double SPEED_OF_LIGHT = 299792458.0; // in m/s
...
propagationDelay = cableLength / SPEED_OF_LIGHT;

division operator

25

Named Constants

n  The reserved word final is a modifier – it modifies
SPEED_OF_LIGHT so that its value is fixed or "final."

n  All named constants use the final modifier.
n  The final modifier tells the compiler to generate an

error if your program ever tries to change the final
variable's value at a later time.

n  Standard coding conventions suggest that you
capitalize all characters in a named constant and use
an underscore to separate the words in a multiple-
word named constant.

26

Named Constants

n  There are two main benefits of using named
constants:
1.  Using named constants leads to code that is more

understandable.
2.  If a programmer ever needs to change a named constant's

value, the change is easy – find the named constant
initialization at the top of the method and change the
initialization value. That implements the change
automatically everywhere within the method.

27

Arithmetic Operators

n  Java's +, -, and * arithmetic operators perform
addition, subtraction, and multiplication in the normal
fashion.

n  Java performs division differently depending on
whether the numbers/operands being divided are
integers or floating-point numbers.

n  When the Java Virtual Machine (JVM) performs
division on floating-point numbers, it performs
"calculator division." We call it "calculator division"
because Java's floating-point division works the same
as division performed by a standard calculator. For
example, if you divide 7.0 by 2.0 on your calculator,
you get 3.5. Likewise, this code fragment prints 3.5:
System.out.println(7.0 / 2.0);

28

Floating-Point Division

n  This next line says that 7.0 / 2.0 "evaluates to" 3.5:
7.0 / 2.0 ⇒ 3.5

n  This next line asks you to determine what 5 / 4. evaluates to:
5 / 4. ⇒ ?

n  5 is an int and 4. is a double. This is an example of a mixed
expression. A mixed expression is an expression that contains
operands with different data types.

n  double values are considered to be more complex than int
values because double values contain a fractional component.

n  Whenever there's a mixed expression, the JVM temporarily
promotes the less-complex operand's type so that it matches the
more-complex operand's type, and then the JVM applies the
operator.

n  In the 5 / 4. expression, the 5 gets promoted to a double and
then floating-point division is performed. The expression
evaluates to 1.25.

29

Integer Division

n  There are two ways to perform division on integers:
n  The / operator performs "grade school" division and

generates the quotient. For example:

7 / 2 ⇒ ?

n  The % operator (called the modulus operator) also performs
"grade school" division and generates the remainder. For
example:

7 % 2 ⇒ ?

8 % 12 ⇒ ?

30

Expression Evaluation Practice

n  Given these initializations:
int a = 5, b = 2;

double c = 3.0;

n  Use Chapter 3's operator precedence table to
evaluate the following expressions:
(c + a / b) / 10 * 5

(0 % a) + c + (0 / a)

31

Increment and Decrement Operators

n  Use the increment operator (++) operator to increment
a variable by 1. Use the decrement operator (--) to
decrement a variable by 1.

n  Here's how they work:
x++; ≡ x = x + 1;

x--; ≡ x = x - 1;

n  Proper style dictates that the increment and decrement
operators should be used instead of statements like this.

32

Compound Assignment Operators

n  The compound assignment operators are:
n  +=, -=, *=, /=, %=

n  The variable is assigned an updated version of the
variable's original value.

n  Here's how they work:
x += 3; ≡ x = x + 3;
x -= 4; ≡ x = x - 4;

n  Proper style dictates that compound assignment
operators should be used instead of statements like this

Repeat the variable on both
sides of the "="

33

Tracing Practice

n  Trace this code fragment:
int a = 4, b = 6;

double c = 2.0;

a -= b;

b--;

c++;

c *= b;

System.out.println("a + b + c = " + (a + b + c));

34

Type Casting

n  In writing a program, you'll sometimes need to
convert a value to a different data type. The cast
operator performs such conversions. Here's the
syntax:

(<type>) expression

n  Suppose you've got a variable named interest that
stores a bank account's interest as a double. You'd
like to extract the dollars portion of the interest and
store it in an int variable named
interestInDollars. To do that, use the int cast
operator like this:
interestInDollars = (int) interest;

cast operator

35

Type Casting

n  If you ever need to cast more than just a single value
or variable (i.e., you need to cast an expression), then
make sure to put parentheses around the entire thing
that you want casted. Note this example:
double interestRate;

double balance;

int interestInDollars;

...

interestInDollars = (int) (balance * interestRate);

Parentheses are necessary here.

36

n  A char variable holds a single character.
n  A char constant is surrounded by single quotes.
n  Example char constants:

n  'B', '1', ':'

n  Example code fragment:
char first, middle, last;

first = 'J';

middle = 'S';

last = 'D';

System.out.println("Hello, " + first + middle +

 last + '!');

n  What does this code fragment print?

Character Type - char
37

Escape Sequences

n  Escape sequences are char constants for hard-to-print characters such
as the enter character and the tab character.

n  An escape sequence is comprised of a backslash (\) and another
character.

n  Common escape sequences:
n  \n newline – go to first column in next line
n  \t move the cursor to the next tab stop
n  \\ print a backslash
n  \" print a double quote
n  \' print a single quote

n  Provide a one-line print statement that prints these tabbed column
headings followed by two blank lines:
 ID NAME

n  Note that you can embed escape sequences inside strings the same way
that you would embed any characters inside a string. For example,
provide an improved one-line print statement for the above heading.

n  Why is it called an "escape" sequence?

38

Primitive Variables vs. Reference Variables

n  There are two basic categories of variables in Java –
primitive variables and reference variables.

n  Primitive variables hold only one piece of data.
Primitive variables are declared with a primitive type
and those types include:
n  int, long (integer types)
n  float, double (floating point types)
n  char (character type)

n  Reference variables are more complex - they can hold
a group of related data. Reference variables are
declared with a reference type and here are some
example reference types:
n  String, Calendar, programmer-defined classes

Reference types start with an uppercase first letter.

39

String Basics

n  Example code for basic string manipulations:

String s1;

String s2 = "and I say hello";

s1 = "goodbye";

s1 = "You say " + s1;

s1 += ", " + s2 + '.';

System.out.println(s1);

n  Trace the above code.

declaration
initialization

assignment
concatenation, then assignment

concatenation, then compound assignment

40

String Methods

n  String's charAt method:
n  Returns the character in the given string at the specified

position.
n  The positions of the characters within a string are numbered

starting with position zero.
n  What's the output from this example code?

String animal = "cow";

System.out.println("Last character: " + animal.charAt(2));

To use a method, include the reference
variable, dot, method name, parentheses, and
argument(s).

41

String Methods

n  String's length method:
n  Returns the number of characters in the string.
n  What's the output from this code fragment?

String s = "hi";

System.out.println(s.length());

42

String Methods

n  To compare strings for equality, use the equals method. Use
equalsIgnoreCase for case-insensitive equality.

n  Trace this program:
public class Test
{
 public static void main(String[] args)
 {
 String animal1 = "Horse";
 String animal2 = "Fly";
 String newCreature;
 newCreature = animal1 + animal2;

 System.out.println(newCreature.equals("HorseFly"));
 System.out.println(newCreature.equals("horsefly"));
 System.out.println(newCreature.equalsIgnoreCase("horsefly"));
 } // end main
} // end class Test

43

“Static” Operator

n  Static Operator used in
n  Variables

n  Makes the variable generic/common for the entire class
n  Methods

n  Method belongs to class rather than object
n  Can be invoked without creating instance of the class
n  Using <class_name>.<method_name>
n  Cannot use non-static data members
n  Cannot use other non-static methods
n  Cannot use “this” and “super”

n  Block

n  Used to initialize static members
n  Executes before main method at the time of class

loading.

44

Input – the Scanner Class

n  Sun provides a pre-written class named Scanner, which allows
you to get input from a user.

n  To tell the compiler you want to use the Scanner class, insert
the following import statement at the very beginning of your
program (right after your prologue section and above the main
method):

import java.util.Scanner;

n  At the beginning of your main method, insert this initialization
statement:

Scanner stdIn = new Scanner(System.in);

n  After declaring stdIn as shown above, you can read and store a
line of input by calling the nextLine method like this:

<variable> = stdIn.nextLine();

44

Input – the Scanner Class

/***
* FriendlyHello.java
* Dean & Dean
*
* This program displays a personalized Hello greeting.
***/

import java.util.Scanner;

public class FriendlyHello
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String name;
 System.out.print("Enter your name: ");
 name = stdIn.nextLine();
 System.out.println("Hello " + name + "!");
 } // end main
} // end class FriendlyHello

These two statements
create a keyboard-input
connection.

Use the print
method (no “ln”)
for most prompts.

This
gets a
line of
input.

45

Input – the Scanner Class

n  In addition to the nextLine method, the Scanner
class contains quite a few other methods that get
different forms of input. Here are some of those
methods:
nextInt()

Skip leading whitespace until an int value is found. Return the int value.

nextLong()
Skip leading whitespace until a long value is found. Return the long value.

nextFloat()
Skip leading whitespace until a float value is found. Return the float value.

nextDouble()
Skip leading whitespace until a double value is found. Return the double value.

next()
Skip leading whitespace until a token is found. Return the token as a String value.

46

Input – the Scanner Class

n  What is whitespace?
n  Whitespace refers to all characters that appear as blanks on

a display screen or printer. This includes the space character,
the tab character, and the newline character.

n  The newline character is generated with the enter key.
n  Leading whitespace refers to whitespace characters that are

at the left side of the input.
n  What is a token?

n  A token is a sequence of non-whitespace characters.

n  What happens if the user provides invalid input for
one of Scanner’s method calls?
n  The JVM prints an error message and stops the program.
n  For example, 45g and 45.0 are invalid inputs if nextInt()

is called.

47

Input – the Scanner Class

n  Here's a program that uses Scanner’s nextDouble
and nextInt methods:
import java.util.Scanner;

public class PrintPO

{

 public static void main(String[] args)

 {

 Scanner stdIn = new Scanner(System.in);

 double price; // price of purchase item

 int qty; // number of items purchased

 System.out.print("Price of purchase item: ");

 price = stdIn.nextDouble();

 System.out.print("Quantity: ");

 qty = stdIn.nextInt();

 System.out.println("Total purchase order = $" + price * qty);

 } // end main

} // end class PrintPO

48

Input – the Scanner Class

n  Here's a program that uses Scanner’s next method:
import java.util.Scanner;

public class PrintInitials
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String first; // first name
 String last; // last name

 System.out.print(
 "Enter first and last name separated by a space: ");
 first = stdIn.next();
 last = stdIn.next();
 System.out.println("Your initials are " +
 first.charAt(0) + last.charAt(0) + ".");
 } // end main
} // end class PrintInitials

49

Chapter 4 - Control Statements

n  Conditions
n  if Statement
n  && Logical Operator
n  || Logical Operator
n  ! Logical Operator
n  switch Statement
n  while Loop
n  do Loop
n  for Loop
n  Loop Comparison
n  Nested Loops
n  Boolean Variables
n  Input Validation
n  Boolean Logic
n  Expression Evaluation Practice

1

Conditions

n  Throughout this chapter, you’ll see if statements and
loop statements where conditions appear within a pair
of parentheses, like this:
if (<condition>)
{
 ...
}

while (<condition>)
{
 ...
}

n  Typically, each condition involves some type of
comparison and the comparisons use comparison
operators….

2

Conditions

n  Here are Java's comparison operators:
==, !=, <, >, <=, >=

n  Each comparison operator evaluates to either true or
false.

n  ==
n  Tests two operands for equality.
n  3 == 3 evaluates to true
n  3 == 4 evaluates to false
n  Note that == uses two equal signs, not one!

n  !=
n  Tests two operands for inequality.
n  The != operator is pronounced “not equal.”

n  The <, >, <=, and >= operators work as expected.

3

if Statement

n  Use an if statement if you need to ask a question in
order to determine what to do next.

n  There are three forms for an if statement:
n  if by itself

n  Use for problems where you want to do something or nothing.

n  if, else
n  Use for problems where you want to do one thing or another

thing.
n  if, else if

n  Use for problems where you want to do one thing out of three or
more choices.

4

if Statement

pseudocode syntax

n  if by itself:

if <condition>
 <statement(s)>

n  if, else:
if <condition>
 <statement(s)>
else

 <statement(s)>

Java syntax

n  if by itself:

if (<condition>)
{

 <statement(s)>
}

n  if, else:
if (<condition>)

{
 <statement(s)>
}

else

{

 <statement(s)>
}

5

if Statement

pseudocode syntax

if, else if:
if <condition>

 <statement(s)>

else if <condition>

 <statement(s)>

 .

 .
 .

else
 <statement(s)>

Java syntax

if, else if, else:
if (<condition>)

{
 <statement(s)>

}

else if (<condition>)

{

 <statement(s)>

}

 .

 .
 .

else
{

 <statement(s)>
}

more else if's here (optional)

optional

more else if's here (optional)

optional

6

if Statement

n  Write a complete program that prompts the user to
enter a sentence and then prints an error message if
the last character is not a period.
sample session:
Enter a sentence:

Permanent good can never be the outcome of violence

Invalid entry – your sentence needs a period!

Italics indicates input. Never hardcode
(include) input as part of your source code!!!

7

&& Logical Operator

n  Suppose you want to print "OK" if the temperature is
between 50 and 90 degrees and print "not OK"
otherwise.

n  Here's the pseudocode solution:
if temp ≥ 50 and ≤ 90

 print "OK"

else

 print "not OK"

not OK OK not OK50o 90o

10

&& Logical Operator

n  And here's the solution using Java:
if (temp >= 50 && temp <= 90)
{
 System.out.println("OK");
}
else
{
 System.out.println("not OK");
}

n  In Java, if two criteria are required for a condition to be satisfied
(e.g., temp >= 50 and temp <= 90), then separate the two
criteria with the && (and) operator. If both criteria use the same
variable (e.g., temp), you must include the variable on both sides
of the &&.

not OK OK not OK50o 90o

11

&& Logical Operator

n  The program on the next slide determines whether
fans at a basketball game win free french fries. If the
home team wins and scores at least 100 points, then
the program prints this message:
Fans: Redeem your ticket stub for a free order of french
fries at Yummy Burgers.

n  On the next slide, replace <insert code here> with
appropriate code.

12

&& Logical Operator

/***************************************
* FreeFries.java
* Dean & Dean
*
* This program reads points scored by the home team
* and the opposing team and determines whether the
* fans win free french fries.
***************************************/

import java.util.Scanner;

public class FreeFries
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int homePts; // points scored by home team
 int opponentPts; // points scored by opponents
 System.out.print("Home team points scored: ");
 homePts = stdIn.nextInt();
 System.out.print("Opposing team points scored: ");
 opponentPts = stdIn.nextInt();

 <insert code here>

 } // end main
} // end class FreeFries

13

|| Logical Operator

n  Provide code that prints "bye" if a response variable
contains a lowercase or uppercase q (for quit). Here’s
a pseudocode implementation:
if response equals “q” or “Q”
 print “Bye”

n  To implement “or” logic in Java, use || (the or
operator). Here’s the Java implementation:
if (response.equals(″q″) || response.equals(″Q″))

{

 System.out.println("bye");

}
When using the || operator, if
both criteria in the or condition
use the same variable (e.g.,
response), you must include the
variable on both sides of the ||.

14

|| Logical Operator

n  It’s a common bug to forget to repeat a variable that’s part of an
|| (or &&) condition. This code generates a compilation error:
if (response.equals(″q″ || ″Q″))
{

 System.out.println("bye");

}

n  Another common bug is to use the == operator to compare
strings for equality. This code compiles successfully, but it doesn’t
work properly:
if (response == ″q″ || response == ″Q″)

{

 System.out.println("bye");

}

15

|| Logical Operator

n  As an alternative to using the || operator with two
equals method calls, you could use an
equalsIgnoreCase method call like this:
if (response.equalsIgnoreCase("q"))
{

 System.out.println("Bye");

}

16

! Logical Operator

n  The ! (not) operator reverses the truth or falsity of a
condition.

n  For example, suppose that a char variable named
reply holds a q (lowercase or uppercase) if the user
wants to quit, or some other character if the user
wants to continue. To check for "some other
character" (i.e., not a q or Q), use the ! operator like
this:
if (!(reply == 'q' || reply == 'Q'))

{

 System.out.println("Let's get started....");

 ...

17

switch Statement

n  When to use a switch statement:
n  If you need to do one thing from a list of multiple possibilities.

n  Note that the switch statement can always be replaced by an
if, else if, else statement, but the switch statement is
considered to be more elegant. (Elegant code is easy to
understand, easy to update, robust, reasonably compact, and
efficient.)

n  Syntax:
switch (<controlling-expression>)
{
 case <constant1>:
 <statements>;
 break;
 case <constant2>:
 <statements>;
 break;
 ...
 default:
 <statements>;
} // end switch

18

switch Statement

n  How the switch statement works:
n  Jump to the case constant that matches the controlling

expression's value (or jump to the default label if there are
no matches) and execute all subsequent statements until
reaching a break.

n  The break statement causes a jump out of the switch
statement (below the "}").

n  Usually, break statements are placed at the end of every
case block. However, that's not a requirement and they're
sometimes omitted for good reasons.

n  Put a : after each case constant.
n  Even though statements following the case constants are

indented, { }'s are not necessary.
n  The controlling expression should evaluate to either an int

or a char.
n  Proper style dictates including "// end switch" after the
switch statement's closing brace.

19

switch Statement

n  Given this code fragment:
i = stdIn.nextInt();
switch (i)
{
 case 1:
 System.out.print("A");
 break;
 case 2:
 System.out.print("B");
 case 3: case 4:
 System.out.print("C-D");
 break;
 default:
 System.out.print("E-Z");
} // end switch

n  If input = 1, what's the output?
n  If input = 2, what's the output?
n  If input = 3, what's the output?
n  If input = 4, what's the output?
n  If input = 5, what's the output?

20

switch Statement

n  Write a program that reads in a ZIP Code and uses
the first digit to print the associated geographic area:
if zip code print this
begins with message
0, 2, 3 <zip> is on the East Coast.
4-6 <zip> is in the Central Plains area.
7 <zip> is in the South.
8-9 <zip> is in the West.
other <zip> is an invalid ZIP Code.

n  Note: <zip> represents the entered ZIP Code value.

21

while Loop

pseudocode syntax

while <condition>
 <statement(s)>

Java syntax

while (<condition>)
{

 <statement(s)>
}

n  Use a loop statement if you need to do the same thing
repeatedly.

23

71

while Loop

n  Write a main method that finds the sum of user-
entered integers where -99999 is a sentinel value.
public static void main(String[] args)
{

 Scanner stdIn = new Scanner(System.in);

 int sum = 0; // sum of user-entered values

 int x; // a user-entered value

 System.out.print("Enter an integer (-99999 to quit): ");

 x = stdIn.nextInt();

 while (x != -99999)

 {

 sum = sum + x;

 System.out.print("Enter an integer (-99999 to quit): ");

 x = stdIn.nextInt();

 }

 System.out.println("The sum is " + sum);

} // end main

24

do Loop

n  When to use a do loop:
n  If you know that the repeated thing will always have to be

done at least one time.

n  Syntax:
do
{
 <statement(s)>
} while (<condition>);

n  Note:
n  The condition is at the bottom of the loop (in contrast to the
while loop, where the condition is at the top of the loop).

n  The compiler requires putting a ";" at the very end, after the
do loop's condition.

n  Proper style dictates putting the "while" part on the same line
as the "}"

25

do Loop

n  Problem description:
n  As part of an architectural design program, write a main

method that prompts the user to enter length and width
dimensions for each room in a proposed house so that total
floor space can be calculated for the entire house.

n  After each length/width entry, ask the user if there are any
more rooms.

n  Print the total floor space.

26

for Loop

n  When to use a for loop:
n  If you know the exact number of loop iterations before the

loop begins.

n  For example, use a for loop to:
n  Print this countdown from 10.

Sample session:
10 9 8 7 6 5 4 3 2 1 Liftoff!

n  Find the factorial of a user-entered number.
Sample session:
Enter a whole number: 4

4! = 24

28

for Loop

for loop syntax
for (<initialization>; <condition>; <update>)
{

 <statement(s)>

}

for loop example
for (int i=10; i>0; i--)

{

 System.out.print(i + " ");

}

System.out.println("Liftoff!");

n  for loop semantics:
n  Before the start of the first loop iteration, execute the initialization

component.
n  At the top of each loop iteration, evaluate the condition

component:
n  If the condition is true, execute the body of the loop.
n  If the condition is false, terminate the loop (jump to the statement

below the loop's closing brace).

n  At the bottom of each loop iteration, execute the update
component and then jump to the top of the loop.

29

for Loop

n  Trace this code fragment with an input value of 3.
Scanner stdIn = new Scanner(System.in);
int number; // user entered number
double factorial = 1.0; // factorial of user entry

System.out.print("Enter a whole number: ");
number = stdIn.nextInt();

for (int i=2; i<=number; i++)
{
 factorial *= i;
}

System.out.println(number + "! = " + factorial);

for loop index variables are often,
but not always, named i for
“index.”

Declare for loop index variables
within the for loop heading.

30

for Loop

n  Write a main method that prints the squares for
each odd number between 1 and 99.

n  Output:
1
9
25
49
81
...

31

Loop Comparison

for loop:

do loop:

while loop:

When to use
If you know, prior to
the start of loop, how
many times you want
to repeat the loop.

If you always need to
do the repeated thing
at least one time.

If you can't use a
for loop or a do
loop.

Template
for (int i=0; i<max; i++)
{
 <statement(s)>
}

do
{
 <statement(s)>
 <prompt - do it again (y/n)?>
} while (<response == 'y'>);

<prompt - do it (y/n)?>
while (<response == 'y'>)
{
 <statement(s)>
 <prompt - do it again (y/n)?>
}

32

Nested Loops

n  Nested loops = a loop within a loop.
n  Example – Write a program that prints a rectangle of

characters where the user specifies the rectangle's
height, the rectangle's width, and the character's
value.
Sample session:
Enter height: 4

Enter width: 3

Enter character: <

<<<

<<<

<<<

<<<

34

Boolean Variables

n  Programs often need to keep track of the state of some
condition.

n  For example, if you're writing a program that simulates the
operations of a garage door opener, you'll need to keep track of
the state of the garage door's direction - is the direction up or
down? You need to keep track of the direction "state" because
the direction determines what happens when the garage door
opener's button is pressed. If the direction state is up, then
pressing the garage door button causes the direction to switch to
down. If the direction state is down, then pressing the garage
door button causes the direction to switch to up.

n  To implement the state of some condition, use a boolean
variable.

38

Boolean Variables

n  A boolean variable is a variable that:
n  Is declared to be of type boolean.
n  Holds the value true or the value false.

n  Boolean variables are good at keeping track of the
state of some condition when the state has one of two
values. For example:

Values for the state of a garage
door opener's direction

Associated values for a boolean
variable named upDirection

up true

down false

39

Boolean Variables

n  This code fragment initializes an upDirection
variable to true and shows how to toggle its value
within a loop.
boolean upDirection = true;
do

{

 ...

 upDirection = !upDirection;

 ...

} while (<user presses the garage door opener button>);

If upDirection holds
the value true, this
statement changes it to
false, and vice versa.

40

Boolean Variables

import java.util.Scanner;

public class GarageDoor
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String entry; // user's entry - enter key or q
 boolean upDirection = true; // Is the current direction up?
 boolean inMotion = false; // Is garage door currently moving?

 System.out.println("GARAGE DOOR OPENER SIMULATOR\n");

 do
 {
 System.out.print("Press Enter, or enter 'q' to quit: ");
 entry = stdIn.nextLine();

 if (entry.equals("")) // pressing Enter generates ""
 {
 inMotion = !inMotion; // button toggles motion state

41

Boolean Variables

 if (inMotion)
 {
 if (upDirection)
 {
 System.out.println("moving up");
 }
 else
 {
 System.out.println("moving down");
 }
 }
 else
 {
 System.out.println("stopped");
 upDirection = !upDirection; // direction reverses at stop
 }
 } // end if entry = ""
 } while (entry.equals(""));
 } // end main
} // end GarageDoor class

42

Input Validation

n  boolean variables are often used for input validation.
n  Input validation is when a program checks a user's

input to make sure it's valid, i.e., correct and
reasonable. If it's valid, the program continues. If it's
invalid, the program enters a loop that warns the user
about the erroneous input and then prompts the user
to re-enter.

n  In the GarageDoor program, note how the program
checks for an empty string (which indicates the user
wants to continue), but it doesn't check for a q.

43

Input Validation

n  To add input validation to the GarageDoor program, replace the
GarageDoor program's prompt with the following code. It
forces the user to press Enter or enter a q or Q.
validEntry = false;
do
{
 System.out.print("Press Enter, or enter 'q' to quit: ");
 entry = stdIn.nextLine();
 if (entry.equals("") || entry.equalsIgnoreCase("q"))
 {
 validEntry = true;
 }
 else
 {
 System.out.println("Invalid entry.");
 }
} while (validEntry == false); What is a more elegant

implementation for this?

44

Boolean Logic

n  Boolean logic (= Boolean algebra) is the formal logic
that determines how conditions are evaluated.

n  The building blocks for Boolean logic are things that
you've already seen - the logical operators &&, ||,
and !.

n  Logical operator review:
n  For the && operator, both sides need to be true for the whole

thing to be true.
n  For the || operator, only one side needs to be true for the

whole thing to be true.
n  The ! operator reverses the truth or falsity of something.

45

Expression Evaluation Practice

n  Assume:
boolean ok = false;

double x = 6.5, y = 10.0;

n  Evaluate these expressions:
(x != 6.5) || !ok

true && 12.0 < x + y

46

Chapter 5 - Using Pre-Built Methods

n  The API Library
n  API Headings
n  Math Class
n  Wrapper Classes for Primitive Types
n  Lottery Example
n  String Methods:

n  substring
n  indexOf
n  lastIndexOf

n  Formatted Output with the printf Method

1

The API Library

n  When working on a programming problem, you should
normally check to see if there are pre-built classes that
meet your program's needs.

n  If there are such pre-built classes, then use those
classes (don't "reinvent the wheel"). For example:
n  User input is a rather complicated task. The Scanner class

handles user input. Whenever you need user input in a
program, use the Scanner class's input methods (rather than
writing and using your own input methods).

n  Math calculations are sometimes rather complicated. The
Math class handles math calculations. Whenever you need to
perform non-trivial math calculations in a program, use the
Math class's methods (rather than writing and using your
own math methods).

2

The API Library

n  Java's pre-built classes are stored in its class library, which is
more commonly known as the Application Programming Interface
(API) library. See http://download.oracle.com/javase/6/docs/api/.

n  Java's API classes are not part of the core Java language. For a
program to use an API class, the class first needs to be loaded/
imported into the program. For example, to use the Scanner
class, include this at the top of your program:
import java.util.Scanner;

n  The java.util thing that precedes Scanner is called a
package.

n  A package is a group of classes.
n  The java.util package contains quite a few general-purpose

utility classes. The only one you'll need for now is the Scanner
class.

3

The API Library

n  Some classes are considered to be so important that
the Java compiler automatically imports them for you.
The automatically imported classes are in the
java.lang package.

n  The Math class is one of those classes, so there's no
need for you to import the Math class if you want to
perform math operations.

n  The Java compiler automatically inserts this statement
at the top of every Java program:
import java.lang.*;

n  The asterisk is a wild card and it means that all classes
in the java.lang package are imported, not just the
Math class.

4

API Headings

n  To use an API class, you don't need to know the
internals of the class; you just need to know how to
"interface" with it.

n  To interface with a class, you need to know how to
use the methods within the class. For example, to
perform input, you need to know how to use the
Scanner class's methods - next, nextLine,
nextInt, nextDouble, etc.

n  To use a method, you need to know what type of
argument(s) to pass to it and what type of value it
returns.

n  The standard way to show that information is to show
the method's source code heading.

5

API Headings

n  For example, here's the source code heading for the Scanner
class's nextInt method:
public int nextInt()

n  And here's an example of calling the nextInt method:
int days = stdIn.nextInt();

All the methods in the API library are public,
which means that they are accessible from
everywhere; i.e., the "public" can access them.

The return type (int in this example)
indicates the type of the value that's being
returned from the method.

The arguments that you pass to the method
would go inside the parentheses (but no
arguments are passed to the nextInt method).

6

Math Class

n  Source code headings for API methods are commonly
referred to as API headings.

n  Here are the API headings for some of the more
popular methods in the Math class:
n  public static int abs(int num)

n  Returns the absolute value of num.

n  public static double abs(double num)
n  Returns the absolute value of num.

n  public static int max(int x, int y)
n  Returns the larger value of x and y.

n  public static double max(double x, double y)
n  Returns the larger value of x and y.

7

Math Class

n  Math class API headings (continued):
n  public static int min(int x, int y)

n  Returns the smaller value of x and y.

n  public static double min(double x, double y)
n  Returns the smaller value of x and y.

n  public static double pow(double num, double power)
n  Returns num raised to the specified power.

n  public static double random()
n  Returns a uniformly distributed value between 0.0 and 1.0, but

not including 1.0.

n  public static long round(double num)
n  Returns the whole number that is closest to num.

n  public static double sqrt(double num)
n  Returns the square root of num.

8

Math Class

n  Note the static modifier at the left of all the Math methods. All
the methods in the Math class are static methods (also called
class methods), which means they are called by prefacing the
method's name with the name of the class in which they are
defined. For example:
int position1 = 15, position2 = 18;
int distanceApart = Math.abs(position1 - position2);

n  Write a Java statement that updates x's value so x gets the
absolute value of its original value.

Call Math methods by prefacing them with Math dot.

9

Math Class

n  It is legal to pass an integer value to a method that accepts a
floating-point argument. Note the following example. Horton’s
Law says that the length of a river is related to the area drained
by the river in accordance with this formula:

length ≈ 1.4 (area)0.6

n  Here's how to implement Horton's Law in Java code:
int area = 10000; // square miles drained
double riverLength = 1.4 * Math.pow(area, 0.6);

n  A common use of computers is to model real-world activities that
rely on random events.

n  That's because computers are good at generating random
numbers and being able to repeat the random events many,
many times.

OK to pass an
int (area),
into pow,
which accepts
double
arguments.

10

Math Class

n  The Math class contains a named constant, PI.
n  Pi, written as π in math books, is the ratio of a circle's

perimeter to its diameter.
n  It contains this double value: 3.14159265358979323846
n  It's a constant, which means its value is fixed. If you

attempt to assign a value to it, you'll get a compilation error.
n  Just like Math's methods are class methods and they are

accessed using the Math class name, Math's PI is a class
variable and it is accessed using the Math class name. In
other words, if you need pi, specify Math.PI.

n  Complete this code fragment:
double radius = 3.0;

double volumeOfSphere =

11

Wrapper Classes For Primitive Types

n  A wrapper class is a class that surrounds a relatively simple item
in order to add functionality to the simple item.

n  Here are wrapper classes for some of the Java primitive types:
Wrapper Class Primitive Type
Integer int
Long long
Float float
Double double
Character char

n  Note that the wrapper class names are the same as the primitive
names except for the uppercase first letter. What are the
exceptions to that rule?

n  The wrapper classes are defined in the java.lang package. The
Java compiler automatically imports all the classes in the
java.lang package, so there's no need to import the wrapper
classes explicitly.

12

Wrapper Classes For Primitive Types

n  Most real-world Java programs use GUI I/O instead of text-based I/O.
(GUI = graphical user interface. I/O = input/output.)

n  What is text-based I/O?

n  What is GUI I/O?

n  With GUI programs, all numeric output is string based. So to display a
number, you need to convert the number to a string prior to calling the
GUI display method. All numeric input is string based, too. So to read a
number in a GUI program, you first read the input as a string and then
convert the string to a number.

n  Here are string conversion methods provided by the numeric wrapper
classes:

 Wrapper Class string à number number à string
 Integer Integer.parseInt(<string>) Integer.toString(<#>)
 Long Long.parseLong(<string>) Long.toString(<#>)
 Float Float.parseFloat(<string>) Float.toString(<#>)
 Double Double.parseDouble(<string>) Double.toString(<#>)

13

Wrapper Classes For Primitive Types

n  Conversion examples - strings to numbers:
String yearStr = "2011";

String scoreStr = "78.5";

int year = Integer.parseInt(yearStr);

double score = Double.parseDouble(scoreStr);

n  Remember - to convert a string to a numeric type, use
X.parseX where X is the numeric type you're interested
in.

n  Conversion examples - numbers to strings :
int year = 2011;

double score = 78.5;

String yearStr = Integer.toString(year);

String scoreStr = Double.toString(score);

14

Wrapper Classes For Primitive Types

n  To find the largest and smallest possible values for a
particular type, use the type's wrapper class and access
the wrapper class's MAX_VALUE and MIN_VALUE named
constants. For example:
Integer.MAX_VALUE

Double.MAX_VALUE

Long.MIN_VALUE

n  Write a lottery program that prompts the user to guess a
randomly generated number between 0 and the
maximum int value. The user pays $1.00 for each
guess and wins $1,000,000 if the guess is correct. The
user enters a "q" to quit.

15

Lottery Example

import java.util.Scanner;

public class Lottery
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String input;
 int winningNumber =

 System.out.println("Want to win a million dollars?");
 System.out.println("If so, guess the winning number (a" +
 " number between 0 and " + Integer.MAX_VALUE + ").");
 do
 {
 System.out.print(
 "Insert $1.00 and enter your number or 'q' to quit: ");
 input = stdIn.nextLine();

Initialize
winningNumber to a
randomly chosen
integer between 0 and
the largest possible
int.

Hint: Use Math.ceil.

16

Lottery Example

 if (input.equals("give me a hint")) // a back door
 {
 System.out.println("try: " + winningNumber);
 }
 else if (!input.equals("q"))
 {
 if (
 {
 System.out.println("YOU WIN!");
 input = "q"; // force winners to quit
 }
 else
 {
 System.out.println(
 "Sorry, good guess, but not quite right.");
 }
 } // end else if
 } while (!input.equals("q"));
 System.out.println("Thanks for playing. Come again!");
 } // end main
} // end Lottery class

Compare input
with the winning
number.

17

The String Class

n  In Chapter 3, you saw several String methods -
charAt, length, equals, and
equalsIgnoreCase.

n  Those methods are defined in the String class, along
with quite a few other methods that help with string
manipulation tasks.

n  The String class is defined in the java.lang
package. The Java compiler automatically imports all
the classes in the java.lang package, so there's no
need to import the String class explicitly.

n  We'll now present several additional popular methods
in the String class.

18

The String Class's substring Method

n  Here are API headers and brief descriptions for two
alternative forms of the substring method:
n  public String substring(int beginIndex)

n  Returns a string that is a subset of the calling-object string,
starting at the beginIndex position and extending to the end of
the calling-object string.

n  public String substring(int beginIndex, int afterEndIndex)

n  Returns a string that is a subset of the calling-object string,
starting at the beginIndex position and extending to the
afterEndIndex-1 position.

19

The String Class's substring Method

public class StringMethodDemo

{
 public static void main(String[] args)

 {

 String yoda =

 "May the force be with you.";

 System.out.println(yoda.substring(8));
 System.out.println(yoda.substring(4, 13));

 } // end main

} // end StringMethodDemo

calling object

20

The String Class's indexOf Methods

n  Here are API headers and brief descriptions for four alternative
forms of the indexOf method:
n  public int indexOf(int ch)

n  Returns the position of the first occurrence of the given ch character
within the calling-object string. Returns -1 if ch is not found.

n  public int indexOf(int ch, int fromIndex)
n  Returns the position of the first occurrence of the given ch character

within the calling-object string, starting the search at the fromIndex
position. Returns -1 if ch is not found.

n  public int indexOf(String str)
n  Returns the position of the first occurrence of the given str string within

the calling-object string. Returns -1 if str is not found.

n  public int indexOf(String str, int fromIndex)
n  Returns the position of the first occurrence of the given str string within

the calling-object string, starting the search at the fromIndex position.
Returns -1 if str is not found.

21

The String Class's indexOf Methods

public class StringMethodDemo
{

 public static void main(String[] args)

 {

 String egyptian =

 "I will not leave the square. Over my dead body.";

 int index = egyptian.indexOf('.');

 String egyptian2 = egyptian.substring(index + 2);

 System.out.println(egyptian2);
 } // end main

} // end StringMethodDemo

22

The String Class's lastIndexOf Methods

n  The lastIndexOf methods are identical to the indexOf
methods except that they search the calling-object string from
right to left.

n  For the one-parameter lastIndexOf method, the search starts
from the rightmost character.

n  For the two-parameter lastIndexOf method, the search starts
from the position specified by the second parameter.

n  What does this code fragment print?
String quote =

 "Peace cannot be kept by force; it can" +

 " only be achieved by understanding."

System.out.print(

 quote.indexOf("can") + " " +

 quote.indexOf("can", 7) + " " +

 quote.lastIndexOf("can"));

23

Formatted Output with the printf Method

n  You should strive to make program output be
understandable and attractive. To further that goal,
format your output. Here's an example of formatted
output:
Account Actual Budget Remaining
------- ------ ------ ---------

Office Supplies 1,150.00 1,400.00 250.00

Photocopying 2,100.11 2,000.00 (100.11)

Total remaining: $149.89

n  The System.out.printf method is in charge of
generating formatted output.

24

Formatted Output with the printf Method

n  Here's how to generate the "Total remaining" line in
the previous slide's budget report:

System.out.printf(

 "\nTotal remaining: $%.2f\n", remaining1 + remaining2);

n  You can have as many format specifiers as you like in
a given format string. For each format specifier, you
should have a corresponding data item/argument.

format specifier

25

Format Specifier Details

n  Here's the syntax for a format specifier:
%[flags][width][.precision]conversion-character

n  The square brackets indicate that something is
optional. So the flags, width, and precision parts are
optional. Only the % and the conversion character are
required.

26

Conversion Character

n  The conversion character tells the Java Virtual
Machine (JVM) the type of thing that is to be printed.

n  Here is a partial list of conversion characters:
s This displays a string.
d This displays a decimal integer (an int or a long).
f This displays a floating-point number (a float or a double)

with a decimal point and at least one digit to the left of the
decimal point.

e This displays a floating-point number (float or double) in
scientific notation.

27

Conversion Character

n  This code fragment illustrates how to use the
conversion characters:
System.out.printf("Planet: %s\n", "Neptune");
System.out.printf("Number of moons: %d\n", 13);

System.out.printf("Orbital period (in earth years): %f\n", 164.79);

System.out.printf(

 "Average distance from the sun (in km): %e\n", 4498252900.0);

n  Here is the output:
Planet: Neptune
Number of moons: 13

Orbital period (in earth years): 164.790000

Average distance from the sun (in km): 4.498253e+09

28

Precision and Width

n  Precision:
n  Applies only to floating-point numbers (i.e., it works only in

conjunction with the f and e conversion characters).
n  Its syntax consists of a dot and then the number of digits that are to

be printed to the right of the decimal point.
n  If the data item has more fractional digits than the precision

specifier's value, then rounding occurs. If the data item has fewer
fractional digits than the precision specifier's value, then zeros are
added at the right so the printed value has the specified number of
fractional digits.

n  Width:
n  Specifies the minimum number of characters that are to be printed.

If the data item contains more than the specified number of
characters, then all of the characters are printed. If the data item
contains fewer than the specified number of characters, then spaces
are added.

n  By default, output values are right aligned, so when spaces are
added, they go on the left side.

29

Precision and Width

n  This code fragment illustrates how to specify precision
and width in a format specifier:
System.out.printf("Cows are %6s\n", "cool");
System.out.printf("But dogs %2s\n", "rule");

System.out.printf("PI = %7.4f\n", Math.PI);

n  Here is the output:

Cows are cool

But dogs rule

PI = 3.1416

6 characters

7 characters

30

Flags

n  Flags allow you to add supplemental formatting
features, one flag character for each formatting
feature. Here's a partial list of flag characters:
- Display the printed value using left justification.
0 If a numeric data item contains fewer characters than the width

specifier's value, then pad the printed value with leading zeros (i.e.,
display zeros at the left of the number).

, Display a numeric data item with locale-specific grouping separators.
In the United States, that means commas are inserted between
every third digit at the left of the decimal point.

(Display a negative numeric data item using parentheses, rather than
a minus sign. Using parentheses for negative numbers is a common
practice in the field of accounting.

31

BudgetReport Example

public class BudgetReport
{

 public static void main(String[] args)

 {

 final String HEADING_FMT_STR = "%-25s%13s%13s%15s\n";

 final String DATA_FMT_STR = "%-25s%,13.2f%,13.2f%(,15.2f\n";

 double actual1 = 1149.999; // amount spent on 1st account

 double budget1 = 1400; // budgeted for 1st account

 double actual2 = 2100.111; // amount spent on 2nd account

 double budget2 = 2000; // budgeted for 2nd account

 double remaining1, remaining2; // unspent amounts

 System.out.printf(HEADING_FMT_STR,

 "Account", "Actual", "Budget", "Remaining");

 System.out.printf(HEADING_FMT_STR,

 "-------", "------", "------", "---------");

left justification parentheses for negatives,
comma for group separators

32

BudgetReport Example

 remaining1 = budget1 - actual1 ;
 System.out.printf(DATA_FMT_STR,

 "Office Supplies", actual1, budget1, remaining1);

 remaining2 = budget2 - actual2;

 System.out.printf(DATA_FMT_STR,

 "Photocopying", actual2, budget2, remaining2);

 System.out.printf(

 "\nTotal remaining: $%(,.2f\n", remaining1 + remaining2);

 } // end main

} // end class BudgetReport

33

