C++ Basics - 3

Rahul Deodhar

@rahuldeodhar
www.rahuldeodhar.com
rahuldeodhar@gmail.com

Topics for today

e Functions
e Classwork

Topics for today
e Homework

— Program
— Others

Procedural Abstraction & Functions

Top Down design

Top Down Design
To write a program

Develop the algorithm that the program will
use

Translate the algorithm into the
programming language

Top Down Design
(also called stepwise refinement)

Break the algorithm into subtasks
Break each subtask into smaller subtasks

Eventually the smaller subtasks are trivial to
implement in the programming language

Benefits of Top Down Design
e Subtasks, or functions in C++, make programs

— Easier to understand

— Easier to change

— Easier to write

— Easier to test

— Easier to debug

— Easier for teams to develop

Pre-defined Functions

Predefined Functions

 C++ comes with libraries of predefined
functions

 Example: sqrt function
— the _root = sqrt(9.0);

— returns, or computes, the square root
of a number

— The number, 9, iIs called the argument
— the root will contain 3.0

Function Calls
e sgrt(9.0) is a function call
— It invokes, or sets in action, the sqrt function

— The argument (9), can also be a variable or an
expression

* A function call can be used like any
expression
— bonus = sqrt(sales) / 10;

— Cout << “The side of a square with area “ << area
<< o iS o

<< sqrt(area);

A Function Call

//Computes the size of a dog house that can be purchased
//given the user’s budget.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{
const double COST_PER_SQ FT = 10.50;
double budget, area, length_side;
cout << "Enter the amount budgeted for your dog house $";
cin >> budget;
area = budget/COST_PER_SQ FT;
length_side = sqrt(area);
cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);
cout << "For a price of $" << budget << endl
<< "I can build you a luxurious square dog house\n"
<< "that is " << Tength_side
<< " feet on each side.\n";
return 0;
}

Sample Dialogue

Enter the amount budgeted for your dog house $25.00
For a price of $25.00

I can build you a luxurious square dog house

that is 1.54 feet on each side.

Function Call Syntax

* Function_name (Argument List)
— Argument_List is a comma separated list:

(Argument 1, Argument 2, ..., Argument_Last)

e Example:
— side = sgrt(area);

— cout << “2.5 to the power 3.0 is
<< pow(2.5, 3.0);

Function Libraries

Predefined functions are found in libraries

The library must be “included” in a program
to make the functions available

An include directive tells the compiler which
library header file to include.

To include the math library containing sqrt():

#include <cmath>

Newer standard libraries, such as cmath, also require
the directive
using namespace std;

Other Predefined Functions

e abs(x) --- intvalue =abs(-8);
— Returns absolute value of argument x
— Return value is of type int
— Argument is of type x
— Found in the library cstdlib

* fabs(x) --- double value = fabs(-8.0);
— Returns the absolute value of argument x
— Return value is of type double
— Argument is of type double
— Found in the library cmath

Some Predefined Functions

Name Description Type of
Arguments

sqrt square root double

pow powers double

abs absolute value int
for int

labs absolute value Tong
for 1ong

fabs absolute value doubTe
for doub1e

ceil ceiling double
(round up)

floor floor double

(round down)

Type of
Value

Returned

double

double

int

long

double

double

double

Example

sqrt(4.0)
pow(2.0,3.0)

abs(-7)
abs(7)

1abs(-70000)
1abs (70000)

fabs(-7.5)
fabs(7.5)

ceil(3.2)
ceil(3.9)

floor(3.2)
floor(3.9)

Value

2

8.

N N

70000
70000

S b N N
(S, V|

w w
o o

0

o o

Library
Header

cmath
cmath

cstdlib

cstdlib

cmath

cmath

cmath

Type Casting

* Recall the problem with integer division:
int total _candy =9, number_of people =4;
double candy_per_person;
candy _per_person = total candy / number_of people;

— candy_per_person =2, not 2.25!

A Type Cast produces a value of one type
from another type
— static_cast<double>(total candy) produces a

double representing the integer value of
total candy

Type Cast Example

* inttotal candy =9, number_of people =4;
double candy _per_person;
candy_per_person = static_cast<double>(total candy)
/ number_of people;

— candy_per_person now is 2.25!

— This would also work:

candy per_person = total_candy /
static_cast<double>(number_of people);

— This would not!

candy_per_person = static_cast<double>(total candy /
number_of people);

Integer division occurs before type cast

Old Style Type Cast

e C++isanevolving language

* This older method of type casting may be
discontinued in future versions of C++

candy_per_person = double(total _candy)/number_of people;

Class Work

* Canyou
— Determine the value of d?
double d = 11/ 2; \/(x + V)
— Determine the value of \/ 2
pow(2,3) fabs(-3.5) sqrt(pow(3,2)) _b s b — 4ClC
7 / abs(-2)ceil(5.8) floor(5.8) 261

— Convert the following to C++ x(y+7)

Programmer Defined Functions

Programmer-Defined Functions

« Two components of a function definition

— Function declaration (or function prototype)
« Shows how the function is called

» Must appear in the code before the function can be called

« Syntax:
Type_returned Function_Name(Parameter_List);
[*Comment describing what function does™/

— Function definition
» Describes how the function does its task
» Can appear before or after the function is called

« Syntax:
Type_returned Function_Name(Parameter_List) No ;

/lcode to make the function work

Functlon Declaration

Tells the return type
+ Tells the name of the function
« Tells how many arguments are needed
» Tells the types of the arguments

* Tells the formal parameter names

— Formal parameters are like placeholders for the actual
arguments used when the function is called

— Formal parameter names can be any valid identifier

 Example:
double total _cost(int number_par, double price_par);
// Compute total cost including 5% sales tax on
/[number_par items at cost of price_par each

Function Definition

* Provides the same information as the declaration
e Describes how the function does its task

function header
* Example:

double total cost(int number_par, double price_par)
{
const double TAX_RATE = 0.05; //5% tax

double subtotal;
subtotal = price_par * number_par;
return (subtotal + subtotal * TAX_RATE);

}

function body

The Return Statement
e Ends the function call

* Returns the value calculated by the function
* Syntax:
return expression;

— expression performs the calculation
or

— expression is a variable containing the
calculated value

e Example:
return subtotal + subtotal * TAX_RATE;

The Function Call

e Tells the name of the function to use

* Lists the arguments

 |s used in a statement where the returned
value

makes sense
 Example:

double bill = total cost(number, price);

A Function Definition (part 1 of 2)

#include <iostream>
using namespace std;

double total_cost(int number_par, double price_par); —e— functiondeclaration
//Computes the total cost, including 5% sales tax,
//on number_par items at a cost of price_par each.

int main()

{
double price, bill;
int number;

cout << "Enter the number of items purchased: ";
cin >> number;

cout << "Enter the price per item $";

cin >> price; function call

bill = total_cost(number, price);“////

cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);
cout << number << items at
<< "$" << price << " each.\n"
<< "Final bill, including tax, is $" << bill
<< endl;

function
return 0; heading

} A—J
double total_cost(int number_par, double price_par)
{

const double TAX_RATE = 0.05; //5% sales tax

double subtotal;
function function

.) body definition
subtotal = price_par * number_par;

return (subtotal + subtotal*TAX_RATE);

A Function Definition (part 2 of 2)

Sample Dialogue

Enter the number of items purchased: 2
Enter the price per item: $10.10

2 items at $10.10 each.

Final bill, including tax, is $21.21

Function Call Details

 The values of the arguments are plugged into
the formal parameters (Call-by-value)

* The first argument is used for the first formal
parameter, the second argument for the
second formal parameter, and so forth.

— The value plugged into the formal parameter is

used in all instances of the formal parameter in
the function body

Details of a Function Call (part 1 of 2)

Anatomy of the Function Call in Display 3.3

0O Before the function is called, the values of the variables number and price
are set o 2 and 10.10, by cin statements (as you can see in the Sample
Dialogue in Display 3.3).

1 The following statement, which includes a function call, begins executing:

bill = total_cost(number, price);

2 The value of number (which is 2) is plugged in for number_par and the value

of price (which is 10.10) is plugged in for price_par: plug in

- value of

double total_cost(int number_par, double price_par) number
{

const double TAX_RATE = 0.05; //5% sales tax
double subtotal; plug in
value of

price

subtotal = price_par * number_par; —-—
return (subtotal + subtotal*TAX_RATE);

producing the following:

double total_cost(int 2, double 10.10)

{
const double TAX_RATE = 0.05; //5% sales tax

double subtotal;

subtotal = 10.10 * 2;
return (subtotal + subtotal*TAX_RATE);

Details of a Function Call (part 2 of 2)

Anatomy of the Function Call in Display 3.3 (concluded)

3 The body of the function is executed, that is, the following is executed:

{
const double TAX_RATE = 0.05; //5% sales tax
double subtotal;
subtotal = 10.10 * 2;
return (subtotal + subtotal*TAX_RATE);
}

4 When the return statement is executed, the value of the expression after
return is the value returned by the function. In this case when

return (subtotal + subtotal*TAX_RATE);

is executed, the value of (subtotal + subtotal*TAX_RATE), which is
21.21, is returned by the function call

total_cost(number, price)

and so the value of bi11 (on the left-hand side of the equal sign) is set equal to
21.21 when the following statement finally ends:

bill = total_cost(number, price);

Alternate Declarations
e Two forms for function declarations
1. List formal parameter names

2. List types of formal parmeters, but not names

— First aids description of the function in
comments

e Examples:
double total cost(int number_par, double price_par);

double total cost(int, double);

 Function headers must always list formal
parameter names!

Order of Arguments

 Compiler checks that the types of the arguments
are correct and in the correct sequence.

 Compiler cannot check that arguments are in the
correct logical order

 Example: Given the function declaration:
char grade(int received_par, int min_score_par);

int received = 95, min_score = 60;

cout << grade(min_score, received);

* Produces a faulty result because the arguments are not in
the correct logical order. The compiler will not catch this!

Incorrectly Ordered Arguments (part 1 of 2)

//Determines user’s grade. Grades are Pass or Fail.
#include <iostream>
using namespace std;

char grade(int received_par, int min_score_par);
//Returns ’P’ for passing, if received_par is
//min_score_par or higher. Otherwise returns ’F’ for failing.

int main()

{
int score, need_to_pass;
char Tletter_grade;
cout << "Enter your score"
<< " and the minimum needed to pass:\n";
cin >> score >> need_to_pass;
letter_grade = grade(need_to pass, score);
cout << "You received a score of " << score << end]l
<< "Minimum to pass is " << need_to_pass << endl;
if (letter_grade == ’P’)
cout << "You Passed. Congratulations!\n";
else
cout << "Sorry. You failed.\n";
cout << letter_grade
<< " will be entered in your record.\n";
return 0;
}

char grade(int received_par, int min_score_par)
{
if (received_par >= min_score_par)
return ’P’;
else
return ’'F’;

Incorrectly Ordered Arguments (part 2 of 2)

Sample Dialogue

Enter your score and the minimum needed to pass:
98 60

You received a score of 98

Minimum to pass 1is 60

Sorry. You failed.

F will be entered in your record.

Function Definition Syntax
e Within a function definition
— Variables must be declared before they are used

— Variables are typically declared before the
executable statements begin

— At least one return statement must end the
function

e Each branch of an if-else statement might have its
own return statement

Syntax for a Function That Returns a Value

Function Declaration

Type_Returned Function_Name (Parameter_List) ;
Function_Declaration_Comment

Function Definition

Type_Returned Function_Name (Parameter_List)—e— function header
{
Declaration_1
Declaration 2
body Declaration_Last
Executable Statement 1
Executable_Statement 2

Must include
one or more
- return statements.

Executable Statement Last

Placing Definitions
* A function call must be preceded by either
— The function’s declaration
or

— The function’s definition
* (If the function’s definition precedes the call, a declaration is
not needed)

* Placing the function declaration prior to the
main function and the function definition
after the main function leads naturally to
building your own libraries in the future.

Class Work

Can you

— Write a function declaration and a function definition
for a function that takes three arguments, all of type
int, and that returns the sum of its three arguments?

— Describe the call-by-value parameter mechanism?

— Write a function declaration and a function definition
for a function that takes one argument of type int and
one argument of type double, and that returns a value
of type double that is the average of the two
arguments?

Procedural Abstraction

Procedural Abstraction

 The Black Box Analogy

— A black box refers to something that we know how
to use, but the method of operation is unknown

— A person using a program does not need to know
how it is coded

— A person using a program needs to know what the
program does, not how it does it

* Functions and the Black Box Analogy

— A programmer who uses a function needs to know
what the function does, not how it does it

— A programmer needs to know what will be produced if
the proper arguments are put into the box

Information Hiding

* Designing functions as black boxes is
an example of information hiding

—The function can be used without
knowing how
it is coded

—The function body can be “hidden
from view”

Using The Black Box

* Designing with the black box in mind
allows us

—To change or improve a function definition
without forcing programmers using the

function to change what they have done

— To know how to use a function simply by
reading the function declaration and its
comment

Definitions That Are Black-Box Equivalent

Function Declaration

double new_balance(double balance_par, double rate_par);

//Returns the balance in a bank account after

//posting simple interest. The formal parameter balance_par is

//the old balance. The formal parameter rate_par is the interest rate.
//For example, if rate_par is 5.0, then the interest rate is 5%

//and so new_balance(100, 5.0) returns 105.00.

Definition 1
double new_balance(double balance_par, double rate_par)

{

double interest_fraction, interest;

interest_fraction = rate_par/100;
interest = interest_fraction*balance_par;
return (balance_par + interest);

}

Definition 2
double new_balance(double balance_par, double rate_par)

{

double interest_fraction, updated_balance;

interest_fraction = rate_par/100;
updated_balance = balance_par*(1l + interest_fraction);
return updated_balance;

Procedural Abstraction and C++
* Procedural Abstraction is writing and

using functions
boxes

as if they were black

— Procedure is a general term meaning a

“function like”

— Abstraction im
functionasab
the details of t

set of instructions

olies that when you use a
ack box, you abstract away

ne code in the function body

Procedural Abstraction & Functions

 Write functions so the declaration and
comment is all a programmer needs to use
the function

— Function comment should tell all conditions
required of arguments to the function

— Function comment should describe the returned
value

— Variables used in the function, other than the
formal parameters, should be declared in the
function body

Formal Parameter Names

* Functions are desighed as self-contained modules
e Different programmers may write each function

 Programmers choose meaningful names for
formal parameters

— Formal parameter names may or may not match

variable names used in the main part of the
program

— |t does not matter if formal parameter names
match other variable names in the program

— Remember that only the value of the argument is
plugged into the formal parameter

Simpler Formal Parameter Names

Function Declaration

double total_cost(int number, double price);
//Computes the total cost, including 5% sales tax, on
//number items at a cost of price each.

Function Definition

double total_cost(int number, double price)

{
const double TAX _RATE = 0.05; //5% sales tax

double subtotal;

subtotal = price * number;
return (subtotal + subtotal*TAX_RATE);

Case Study = Buying Pizza
* What size pizza is the best buy?

— Which size gives the lowest cost per square
inch?

— Pizza sizes given in diameter

— Quantity of pizza is based on the area which
is proportional to the square of the radius

Buying Pizza= Problem Definition
* |nput:

— Diameter of two sizes of pizza

— Cost of the same two sizes of pizza

* Qutput:
— Cost per square inch for each size of pizza
— Which size is the best buy

* Based on lowest price per square inch

* If cost per square inch is the same, the smaller size
will be the better buy

Buying Pizza = Problem Analysis
* Subtask 1

— Get the input data for each size of pizza

e Subtask 2

— Compute price per inch for smaller pizza

e Subtask 3

— Compute price per inch for larger pizza
e Subtask 4

— Determine which size is the better buy

e Subtask 5
— Output the results

Buying Pizza = Function Analysis

e Su
Im

otask 2 and subtask 3 should be

nlemented

as a single function because
— Subtask 2 and subtask 3 are identical tasks

* The calculation for subtask 3 is the same as the
calculation for subtask 2 with different arguments

— Subtask 2 and subtask 3 each return a single

value

 Choose an appropriate name for the function

— We’ll use unitprice

Buying Pizza = unitprice Declaration
double unitprice(int diameter, int double price);

//R
/[T
//c

eturns the price per square inch of a pizza
he formal parameter named diameter is the

iameter of the pizza in inches. The formal

// parameter named price is the price of the
// pizza.

Buying Pizza = Algorithm Design
e Subtask 1
— Ask for the input values and store them in

variables
diameter_small diameter_large
price_small price_large
* Subtask 4

— Compare cost per square inch of the two pizzas
using the less than operator

e Subtask 5
— Standard output of the results

Buying

Pizza = unitprice Algorithm

e Subtasks 2 and 3 are implemented as
calls to function unitprice

* unitprice algorithm

—Com
— Com

oute the radius of the pizza

outer the area of the pizza using

pi*r/2
— Return the value of (price / area)

Buying Pizza: unitprice Pseudocode

e Pseudocode
— Mixture of C++ and english

— Allows us to make the algorithm more precise without
worrying about the details of C++ syntax

* unitprice pseudocode
— radius = one half of diameter;

area =TU * radius * radius
return (price / area)

Buying Pizza Calls of unitprice

* Main part of the program implements calls
of unitprice as

— double unit_price_small, unit_price_large;
unit_price_small = unitprice(diameter_small, price_small);
unit_price_large = unitprice(diameter_large, price_large);

Buying Pizza First try at unitprice
* double unitprice (int diameter, double price)

{
const double Pl = 3.14159;

double radius, area;

radius = diameter / 2;
area = Pl * radius * radius;
return (price / area);

J

— Oops! Radius should include the fractional part

Buying Pizza Second try at unitprice

e double unitprice (int diameter, double price)
{
const double Pl = 3.14159;
double radius, area;

radius = diameter / static_cast<double>(2) ;
area = Pl * radius * radius;
return (price / area);

)

— Now radius will include fractional parts
* radius =diameter /2.0; //This would also work

Buying Pizza (part 1 of 2)

//Determines which of two pizza sizes is the best buy.
#include <iostream>
using namespace std;

double unitprice(int diameter, double price);

//Returns the price per square inch of a pizza. The formal
//parameter named diameter is the diameter of the pizza in inches.
//The formal parameter named price is the price of the pizza.

int main()
{
int diameter_small, diameter_large;
double price_small, unitprice_small,
price_large, unitprice_large;

cout << "Welcome to the Pizza Consumers Union.\n";

cout << "Enter diameter of a small pizza (in inches): ";
cin >> diameter_small;

cout << "Enter the price of a small pizza: $";

cin >> price_small;

cout << "Enter diameter of a large pizza (in inches): ";
cin >> diameter_large;

cout << "Enter the price of a large pizza: $";

cin >> price_large;

unitprice_small = unitprice(diameter_small, price_small);
unitprice_large = unitprice(diameter_large, price_Tlarge);

cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);

cout << "Small pizza:\n"

<< "Diameter = << diameter_small <<
<< "Price = $" << price_small

<< Per square inch = $" << unitprice_small << endl
<< "Large pizza:\n"

<< "Diameter = " << diameter_large <<
<< "Price = $" << price_large

<< " Per square inch = $" << unitprice_large << endl;

inches\n"

inches\n"

Buying Pizza (part 2 of 2)

if Cunitprice_large < unitprice_small)

cout << "The large one 1is the better buy.\n";
else

cout << "The small one is the better buy.\n";
cout << "Buon Appetito!\n";

return 0;

double unitprice(int diameter, double price)
{

const double PI = 3.14159;

double radius, area;

radius = diameter/static_cast<double>(2);
area = PI * radius * radius;
return (price/area);

Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter diameter of a small pizza (in inches): 10
Enter the price of a small pizza: $7.50

Enter diameter of a large pizza (in inches): 13
Enter the price of a large pizza: $14.75

Small pizza:

Diameter = 10 inches

Price = $7.50 Per square inch = $0.10

Large pizza:

Diameter = 13 dinches

Price = $14.75 Per square inch = $0.11

The small one is the better buy.

Buon Appetito!

Program Testing

* Programs that compile and run can still
produce errors

* Testing increases confidence that the program
works correctly

— Run the program with data that has known output

* You may have determined this output with pencil and paper
or a calculator

— Run the program on several different sets of data

* Your first set of data may produce correct results in
spite of a logical error in the code

— Remember the integer division problem? If there is no fractional
remainder, integer division will give apparently correct results

Use Pseudocode

* Pseudocode is a mixture of English and the
orogramming language in use

* Pseudocode simplifies algorithm design by
allowing you to ignore the specific syntax of
the programming language as you work out
the details of the algorithm

— If the step is obvious, use C++

— If the step is difficult to express in C++, use
English

Class Work

* Canyou

— Describe the purpose of the comment that
accompanies a function declaration?

— Describe what it means to say a programmer
should
oe able to treat a function as a black box?

— Describe what it means for two functions to be
olack box equivalent?

Local Variables

L ocal Variables
 Variables declared in a function:

— Are local to that function, they cannot be used
from outside the function

— Have the function as their scope
e Variables declared in the main part of a
program:

— Are local to the main part of the program, they
cannot be used from outside the main part

— Have the main part as their scope

Local Variables (part 1 of 2)

//Computes the average yield on an experimental pea growing patch.
#include <iostream>
using namespace std;

double est_total(int min_peas, int max_peas, int pod_count);
//Returns an estimate of the total number of peas harvested.
//The formal parameter pod_count is the number of pods.

//The formal parameters min_peas and max_peas are the minimum
//and maximum number of peas in a pod.

int main() This variable named
{ average_pea is local to the

. . main part of the program.
int max_count, min_count, pod_count;

double average_ pea, yield;

cout << "Enter minimum and maximum number of peas in a pod: ";
cin >> min_count >> max_count;

cout << "Enter the number of pods: ";
cin >> pod_count;

cout << "Enter the weight of an average pea (in ounces): ";
cin >> average_pea;

yield =
est_total(min_count, max_count, pod_count) * average_pea;

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(3);
cout << "Min number of peas per pod << min_count << end]l
<< "Max number of peas per pod << max_count << end]l
<< "Pod count = " << pod_count << endl
<< "Average pea weight = "
<< average_pea << " ounces" << endl
<< "Estimated average yield = " << yield << " ounces"
<< endl;

return 0;

Local Variables (part 2 of 2)

double est_total (int min_peas, intmax_peas, int pod_count)

{ This variable named
double average_pea; average_pea is local to
the function est_total.

average_pea = (max_peas + min_peas)/2.0;
return (pod_count * average_ pea);

}

Sample Dialogue

Enter minimum and maximum number of peas in a pod: 4 6
Enter the number of pods: 10

Enter the weight of an average pea (in ounces): 0.5
Min number of peas per pod = 4

Max number of peas per pod = 6

Pod count = 10

Average pea weight = 0.500 ounces

Estimated average yield = 25.000 ounces

Global Constants

e Global Named Constant

— Available to more than one function as well as the
main part of the program

— Declared outside any function body
— Declared outside the main function body
— Declared before any function that uses it

 Example:

e constdouble Pl =3.14159;

double volume(double);
int main()

{...}

— Pl is available to the main function and to function volume

A Global Named Constant (part 1 of 2)

//Computes the area of a circle and the volume of a sphere.
//Uses the same radius for both calculations.

#include <iostream>

#include <cmath>

using namespace std;

const double PI = 3.14159;

double area(double radius);
//Returns the area of a circle with the specified radius.

double volume(double radius);
//Returns the volume of a sphere with the specified radius.

int main()
{

double radius_of_both, area_of_circle, volume_of_sphere;

cout << "Enter a radius to use for both a circle\n"
<< "and a sphere (in inches): ";
cin >> radius_of_both;

area_of_circle = area(radius_of_both);
volume_of_sphere = volume(radius_of_both);

cout << "Radius = " << radius_of_both << " inches\n"
<< "Area of circle = " << area_of_circle
<< " square inches\n"
<< "Volume of sphere = " << volume_of_sphere

"

<< cubic inches\n";

return 0;

A Global Named Constant (part 2 of 2)

double area(double radius)

{
return (PT * pow(radius, 2));
}
double volume(double radius)
{
return ((4.0/3.0) * PI * pow(radius, 3));
}

Sample Dialogue

Enter a radius to use for both a circle
and a sphere (in inches): 2

Radius = 2 1inches

Area of circle = 12.5664 square inches
Volume of sphere = 33.5103 cubic inches

Global Variables

* Global Variable --rarely used when more
than one function must use a common
variable

— Declared just like a global constant except const
is not used

— Generally make programs more difficult to
understand and maintain

Formal Parameters : Local Variables

* Formal Parameters are actually variables that
are local to the function definition

— They are used just as if they were declared in
the function body

— Do NOT re-declare the formal parameters in the
function body, they are declared in the function
declaration

* The call-by-value mechanism

— When a function is called the formal parameters
are initialized to the values of the
arguments in the function call

Formal Parameter Used as a Local Variable (part 1 of 2)

//Law office billing program.
#include <iostream>
using namespace std;

const double RATE = 150.00; //Dollars per quarter hour.

double fee(int hours_worked, int minutes_worked);
//Returns the charges for hours_worked hours and
//minutes_worked minutes of legal services.

int main()

{
int hours, minutes;
double bill;
cout << "Welcome to the offices of\n"
<< "Dewey, Cheatham, and Howe.\n"
<< "The law office with a heart.\n"
<< "Enter the hours and minutes"
<< " of your consultation:\n"; The value of minutes
cin >> hours >> minutes; is not changed by the
call to fee.
bill = feeChours, minutes);
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "For " << hours << " hours and " << minutes
<< " minutes, your bill is $" << bill << endl;
return 0;
}
double fee(int hours_worked, int minutes_worked) minutes_worked is
{ a local variable

initialized to the

int quarter_hours; .
value of minutes.

minutes_worked = hours_worked*60 + minutes_worked;

quarter_hours = minutes_worked/15;

return (quarter_hours*RATE);

Formal Parameter Used as a Local Variable (part 2 of 2)

Sample Dialogue

Welcome to the offices of
Dewey, Cheatham, and Howe.
The Taw office with a heart.

Enter the hours and minutes of your consultation:
2 45

For 2 hours and 45 minutes, your bill is $1650.00

Namespaces Revisited

* The start of a file is not always the best place
for
using hamespace std;

e Different functions may use different
namespaces

— Placing using namespace std; inside the starting

brace of a function

* Allows the use of different namespaces in different
functions

* Makes the “using” directive local to
the function

Using Namespaces (part 1 of 2)

//Computes the area of a circle and the volume of a sphere.

//Uses the same radius for both calculations.
#include <iostream>

#include <cmath>

const double PI = 3.14159;

double area(double radius);
//Returns the area of a circle with the specified radius.

double volume(double radius);

//Returns the volume of a sphere with the specified radius.

int main()

{

using namespace std;

double radius_of_both, area_of_circle, volume_of_sphere;

cout << "Enter a radius to use for both a circle\n"

<< "and a sphere (in inches): ";
cin >> radius_of_both;

area_of_circle = area(radius_of_both);
volume_of_sphere = volume(radius_of_both);

" "

cout << "Radius =
<< "Area of circle =

<< square inches\n"
<< "Volume of sphere = " << volume_of_sphere

<< cubic inches\n";

<< radius_of_both << inches\n"
" << area_of_circle

return 0;

Using Namespaces (part 2 of 2)

double area(double radius)

{

using namespace std;

_ The sample dialogue for this program would be
return (PI * pow(radius, 2)); the same as the one for the program in Display 3.11.

double volume(double radius)

{

using namespace std;

return ((4.0/3.0) * PI * pow(radius, 3));

Example: Factorial

* n! Represents the factorial function

e nl=1x2x3x..Xn

 The C++ version of the factorial function
found in Display 3.14
— Requires one argument of type int, n
— Returns a value of type int

— Uses a local variable to store the current product

— Decrements n each time it
does another multiplication
n*n-l1*n-2*..*1

Factorial Function

Function Declaration

int factorial(int n);
//Returns factorial of n.
//The argument n should be nonnegative.

Function Definition

int factorial(int n)
{
int product = 1;
while (n > 0)
{
product = n * product;
N-—; = formal parameter n

return product;

Overloading

Overloading Function Names

e C++ allows more than one definition for the
same function name

— Very convenient for situations in which the
“same” function is needed for different numbers
or types of arguments

* Overloading a function name means
providing more than one declaration and
definition using the same function name

Overloading Examples

* double ave(double n1, double n2)

{
J

 double ave(double n1, double n2, double n3)

{ return ((n1 + n2 +n3)/ 3);

}

— Compiler checks the number and types of arguments
in the function call to decide which function to use

return ((n1 + n2) / 2);

cout << ave(10, 20, 30);

uses the second definition

Overloading Details
 Overloaded functions
— Must have different numbers of formal

parameters

AND / OR

Must have at least one different type of
parameter

— Must return a value of the same type

Overloading a Function Name

//I1lustrates overloading the function name ave.
#include <iostream>

double ave(double nl, double n2);
//Returns the average of the two numbers nl and nZ2.

double ave(double nl, double n2, double n3);
//Returns the average of the three numbers nl, n2, and n3.

int main()

{
using namespace std;
cout << "The average of 2.0, 2.5, and 3.0 is "
<< ave(2.0, 2.5, 3.0) << endl;
cout << "The average of 4.5 and 5.5 is "
<< ave(4.5, 5.5) << endl;
return 0;
3 two arguments
double ave(double nl, double n2)
{

return ((nl + n2)/2.0);
} three arguments

-—

double ave(double nl, double n2, double n3)

{
return ((nl + n2 + n3)/3.0);
}
Output

The average of 2.0, 2.5, and 3.0 1is 2.50000
The average of 4.5 and 5.5 is 5.00000

Overloading Example

e Revising the Pizza Buying program
— Rectangular pizzas are now offered!

— Change the input and add a function to compute
the unit price of a rectangular pizza

— The new function could be named unitprice_rectangular
— Or, the new function could be a new (overloaded) version of the
unitprice function that is already used
— Example:
double unitprice(int length, int width, double price)
{
double area = length * width;
return (price / area);

J

Overloading a Function Name (part 1 of 3)

//Determines whether a round pizza or a rectangular pizza is the best buy.
#include <iostream>

double unitprice(int diameter, double price);

//Returns the price per square inch of a round pizza.

//The formal parameter named diameter is the diameter of the pizza

//in inches. The formal parameter named price is the price of the pizza.

double unitprice(int length, int width, double price);
//Returns the price per square inch of a rectangular pizza
//with dimensions Tlength by width inches.

//The formal parameter price is the price of the pizza.

int main()
{
using namespace std;
int diameter, Tlength, width;
double price_round, unit_price_round,
price_rectangular, unitprice_rectangular;

cout << "Welcome to the Pizza Consumers Union.\n";
cout << "Enter the diameter in inches"
<< " of a round pizza: ";
cin >> diameter;
cout << "Enter the price of a round pizza: $";
cin >> price_round;
cout << "Enter length and width in inches\n"
<< "of a rectangular pizza: ";
cin >> length >> width;
cout << "Enter the price of a rectangular pizza: $";

cin >> price_rectangular;

unitprice_rectangular =
unitprice(length, width, price_rectangular);
unit_price_round = unitprice(diameter, price_round);

cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);

Overloading a Function Name (part 2 of 3)

cout << endl
<< "Round pizza: Diameter =
<< diameter << " inches\n"
<< "Price = $" << price_round
<< " Per square inch = $" << unit_price_round
<< endl
<< "Rectangular pizza: Length ="
<< length << " inches\n"
<< "Rectangular pizza: Width =
<< width << " inches\n"
<< "Price = $" << price_rectangular
<< " Per square inch = $" << unitprice_rectangular
<< endl;

"

if (unit_price_round < unitprice_rectangular)

cout << "The round one is the better buy.\n";
else

cout << "The rectangular one 1is the better buy.\n";
cout << "Buon Appetito!\n";

return 0;

double unitprice(int diameter, double price)

{

const double PI = 3.14159;
double radius, area;

radius = diameter/static_cast<double>(2);
area = PI * radius * radius;
return (price/area);

double unitprice(int length, int width, double price)

{

double area = length * width;
return (price/area);

Overloading a Function Name (part 3 of 3)

Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter the diameter 1in inches of a round pizza: 10
Enter the price of a round pizza: $8.50

Enter length and width in inches

of a rectangular pizza: 6 4

Enter the price of a rectangular pizza: $7.55

Round pizza: Diameter = 10 1inches
Price = $8.50 Per square inch = $0.11
Rectangular pizza: Length = 6 inches
Rectangular pizza: Width = 4 inches
Price = $7.55 Per square inch = $0.31
The round one is the better buy.

Buon Appetito!

Automatic Type Conversion

* Given the definition
double mpg(double miles, double gallons)

{

}
what will happen if mpg is called in this way?

return (miles / gallons);

cout << mpg(45, 2) << “ miles per gallon”;

* The values of the arguments will
automatically be converted to type double
(45.0 and 2.0)

Type Conversion Problem

* Given the previous mpg definition and the
following definition in the same program

int mpg(int goals, int misses)
// returns the Measure of Perfect Goals

{
return (goals — misses);

}
what happens if mpg is called this way now?

cout << mpg(45, 2) << “ miles per gallon”;

— The compiler chooses the function that matches parameter
types so the Measure of Perfect Goals will be calculated

Do not use the same function name for unrelated functions

Class Work

* Canyou
— Describe Top-Down Design?

— Describe the types of tasks we have seen so far
that could be implemented as C++ functions?

— Describe the principles of

 The black box
 Procedural abstraction
* Information hiding

— Define “local variable”?
— QOverload a function name?

Void Functions

void-Functions

* In top-down design, a subtask might produce
— No value (just input or output for example)
— One value
— More than one value

* We have seen how to implement functions
that return one value

* A void-function implements a subtask that
returns no value or more than one value

void-Function Definition
e Two main differences between void-function

definitions and the definitions of functions
that return one value

— Keyword void replaces the type of the value returned
* void means that no value is returned by the function

— The return statement does not include and expression

e Example:
void show_results(double f_degrees, double c_degrees)
{
using namespace std;
cout << f_degrees
<< “ degrees Fahrenheit is euivalent to “ << end|
<< c_degrees << “ degrees Celsius.” << end|;
return;

}

Syntax for a void Function Definition

void Function Declaration

voi1d Function_Name (Parameter List) ;

Function_Declaration_Comment

void Function Definition

voi1d Function_Name (Parameter List) —=

{

Declaration_1
Declaration_ 2 —=

Declaration_Last
body Executable_Statement_1

Executable Statement 2

Executable Statement Last

function header

You may intermix the
declarations with the
executable statements.

May (or may not)
include

one or more
return statements.

Using a void-Function

e void-function calls are executable statements
— They do not need to be part of another statement
— They end with a semi-colon

* Example:

show_results(32.5, 0.3);

NOT: cout <<show results(32.5, 0.3);

void-Function Calls

* Mechanism is nearly the same as the function
calls we have seen

— Argument values are substituted for the formal

parameters

* |tis fairly common to have no parameters in void-functions
— In this case there will be no arguments in the function call

— Statements in function body are executed

— Optional return statement ends the function

* Return statement does not include a value to return
* Return statement is implicit if it is not included

Example: Converting Temperatures

* The functions just developed can be used in a
program to convert Fahrenheit temperatures
to Celsius using the formula

C=(5/9) (F—32)

— Do you see the integer division problem?

void Functions (part 1 of 2)

//Program to convert a Fahrenheit temperature to a Celsius temperature.
#include <iostream>

void initialize_screen();
//Separates current output from
//the output of the previously run program.

double celsius(double fahrenheit);
//Converts a Fahrenheit temperature
//to a Celsius temperature.

void show_results(double f_degrees, double c_degrees);
//Displays output. Assumes that c_degrees
//Celsius is equivalent to f_degrees Fahrenheit.

int main()

{
using namespace std;
double f_temperature, c_temperature;
initialize_screen();
cout << "I will convert a Fahrenheit temperature"
<< " to Celsius.\n"
<< "Enter a temperature in Fahrenheit: ";
cin >> f_temperature;
c_temperature = celsius(f_temperature);
show_results(f_temperature, c_temperature);
return 0;
}

//Definition uses iostream:
void initialize_screen()
{

using namespace std;

cout << endl;
return; —e— This return is optional.

void Functions (part 2 of 2)

double celsius(double fahrenheit)
{

return ((5.0/9.0)*(fahrenheit - 32));
}

//Definition uses iostream:
void show_results(double f_degrees, double c_degrees)
{
using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(l);
cout << f_degrees
<< " degrees Fahrenheit is equivalent to\n"
<< c_degrees << " degrees Celsius.\n";
return; <e—

This return is optional.

}
Sample Dialogue

I will convert a Fahrenheit temperature to Celsius.
Enter a temperature in Fahrenheit: 32.5
32.5 degrees Fahrenheit is equivalent to
0.3 degrees Celsius.

void-Functions Why Use a Return?

e |s areturn-statement ever needed in a
void-function since no value is returned?

— Yes!

 What if a branch of an if-else statement requires
that the function ends to avoid producing more
output, or creating a mathematical error?

e void-function in Display 4.3, avoids division by zero
with a return statement

Use of returnin a void Function

Function Declaration

void ice_cream_division(int number, double total_weight);
//Outputs instructions for dividing total_weight ounces of
//ice cream among number customers.

//If number is 0, nothing is done.

Function Definition

//Definition uses iostream:
void ice_cream_division(int number, double total_weight)

{

using namespace std;
double portion;

1f (number == 0) If number is 0, then the
return; w—__ function execution ends here.

portion = total_weight/number;

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "Each one receives
<< portion << " ounces of 1ice cream.'

<< endl;

The Main Function

 The main function in a program is used like a
void function...do you have to end the
program with a return-statement?

— Because the main function is defined to return a
value of type int, the return is needed

— C++ standard says the return 0 can be omitted,
but many compilers still require it

Class Work

* Canyou
— Describe the differences between void-functions
and functions that return one value?

— Tell what happens if you forget the return-
statement
in a void-function?

— Distinguish between functions that are used as
expressions and those used as statements?

Call by Reference

Call-by-Reference Parameters

e Call-by-value is not adequate when we need
a sub-task to obtain input values

— Call-by-value means that the formal parameters
receive the values of the arguments

— To obtain input values, we need to change the
variables that are arguments to the function

e Recall that we have changed the values of
formal parameters in a function body, but we have not
changed the arguments found in the function call

e Call-by-reference parameters allow us to change
the variable used in the function call

— Arguments for call-by-reference parameters must be
variables, not numbers

Call-by-Reference Example
* void get_input(double& f_variable)

{
using namespace std;
cout << “ Convert a Fahrenheit temperature”
<< “to Celsius.\n”
<< “ Enter a temperature in Fahrenheit: “;
cin >>f variable;
}

‘& symbol (ampersand) identifies f_variable as a
call-by-reference parameter
— Used in both declaration and definition!

Call-by-Reference Parameters (part 1 of 2)

//Program to demonstrate call-by-reference parameters.
#include <iostream>

void get_numbers(int& inputl, 7nt& input2);
//Reads two integers from the keyboard.

void swap_values(int& variablel, 7int& variable2);
//Interchanges the values of variablel and variableZ.

void show_results(int outputl, 7nt output2);
//Shows the values of variablel and variable2, in that order.

int main()

{
int first_num, second_num;
get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num);
return 0;

}

//Uses iostream:
void get_numbers(int& inputl, 7nt& input2)

{
using namespace std;
cout << "Enter two integers: ";
cin >> inputl
>> input2;
}

void swap_values(int& variablel, int& variable2)

{

int temp;

temp = variablel;
variablel = variable2;
variable2 = temp;

Call-by-Reference Parameters (part 2 of 2)

//Uses 1ostream:
void show_results(int outputl, 7nt output2)
{
using namespace std;
cout << "In reverse order the numbers are:
<< outputl << " " << output2 << endl;

}
Sample Dialogue

Enter two integers: 5 10
In reverse order the numbers are: 10 5

Call-By-Reference Details

e Call-by-reference works almost as if the
argument variable is substituted for the
formal parameter, not the argument’s value

* In reality, the memory location of the

argument variable is given to the formal
parameter

— Whatever is done to a formal parameter in the
function body, is actually done to the value at
the memory location of the argument variable

Behavior of Call-by-Reference Arguments (part 1 of 2)

Anatomy of a Function Call from Display 4.4
Using Call-by-Reference Arguments

0 Assume the variables first_num and second_num have been assigned the
following memory address by the compiler:

first_num ———= 1010
second_num ——= 1012

(We do not know what addresses are assigned and the results will not depend
on the actual addresses, but this will make the process very concrete and
thus perhaps easier to follow.)

1 In the program in Display 4.4, the following function call begins executing:

get_numbers(first_num, second_num);

2 The function is told to use the memory location of the variable first_num
in place of the formal parameter inputl and the memory location of the
second_num in place of the formal parameter input2. The effect is the
same as if the function definition were rewritten to the following (which is
not legal C++ code, but does have a clear meaning to us):

void get_numbers(int& <the variable at memory location 1010>,
int& <the variable at memory location 1012>)

{
using namespace std;
cout << "Enter two integers: ";
cin >> <the variable at memory location 1010>
>> <the variable at memory location 1012>;
}

Since the variables in locations 1010 and 1012 are first_num and
second_num, the effect is thus the same as if the function definition were
rewritten to the following:

void get_numbers(int& first_num, int& second_num)
{
using namespace std;
cout << "Enter two integers: ";
cin >> first_num
>> second_num;

Behavior of Call-by-Reference Arguments (part 2 of 2)

Anatomy of the Function Call in Display 4.4 (concluded)

3 The body of the function is executed. The effect is the same as if the following
were executed:

{
using namespace std;
cout << "Enter two integers: ";
cin >> first_num
>> second_num;
}

4 When the cin statement is executed, the values of the variables first_num
and second_num are set to the values typed in at the keyboard. (If the dialogue
is as shown in Display 4.4, then the value of first_num is set to 5 and the valuve

of second_num is set to 10.)

5 When the function call ends, the variables first_num and second_num retain
the values that they were given by the cin statement in the function body. (If the
dialogue is as shown in Display 4.4, then the value of first_numis 5 and the
value of second_num is 10 at the end of the function call.)

Call By Reference vs Call by Value

e Call-by-reference e Call-by-value
— The function call: — The function call:
f(age); f(age);
Memory

Name | Location | Contents

Age | 1001 34
L]
initial 1002 A
hours 1003 23.5
1004

void f(int& rvef_par); void flint var_par);

Example: swap values

e void swap(int& variablel, int& variable2)

{

int temp = variablel;
variablel = variable2;
variable2 = temp;

}
e If called with swap(first_ num, second _num);
— first_num is substituted for variablel in the parameter list
— second_num is substituted for variable2 in the parameter list

— temp is assigned the value of variablel (first_num) since the
next line will loose the value in first_num

— variablel (first_num) is assigned the value in variable?2
(second_num)

— variable2 (second _num) is assigned the original value of
variablel (first_num) which was stored in temp

Mixed Parameter Lists

e Call-by-value and call-by-reference parameters
can be mixed in the same function

 Example:
void good_stuff(int& parl, int par2, double& par3);

— parl and par3 are call-by-reference formal
parameters

* Changes in parl and par3 change the argument variable

— par2 is a call-by-value formal parameter

* Changes in par2 do not change the argument variable

Choosing Parameter Types

* How do you decide whether a call-by-
reference
or call-by-value formal parameter is needed?

— Does the function need to change the value of
the variable used as an argument?

— Yes? Use a call-by-reference formal parameter
— No? Use a call-by-value formal parameter

Comparing Argument Mechanisms

//I1lustrates the difference between a call-by-value
//parameter and a call-by-reference parameter.
#include <iostream>

void do_stuff(int parl_value, int& par2_ref);
//parl_value is a call-by-value formal parameter and
//par2_ref is a call-by-reference formal parameter.

int main()

{
using namespace std;
int nl, n2;
nl = 1;
n2 = 2;
do_stuff(nl, n2);
cout << "nl after function call = " << nl << endl;
cout << "n2 after function call = " << n2 << endl;
return 0;
}

void do_stuff(int parl_value, int& par2_ref)
{
using namespace std;
parl_value = 111;
cout << "parl_value in function call = "
<< parl_value << endl;
par2_ref = 222;
cout << "par2_ref in function call = "
<< par2_ref << endl;

Sample Dialogue

parl_value in function call = 111
par2_ref in function call = 222
nl after function call = 1

n2 after function call = 222

Inadvertent Local Variables

e |f a function is to change the value of a variable
the corresponding formal parameter must be a

call-by-reference parameter with an ampersand
(&) attached

* Forgetting the ampersand (&) creates a
call-by-value parameter
— The value of the variable will not be changed

— The formal parameter is a local variable that has no
effect outside the function

— Hard error to find...it looks right!

Inadvertent Local Variable

//Program to demonstrate call-by-reference parameters.
#include <iostream>

void get_numbers(int& inputl, int& input2); forgot
//Reads two integers from the keyboard. the & here

void swap_values(int variablel, int variable2);
//Interchanges the values of variablel and variableZ.

void show_results(int outputl, 7int output2);
//Shows the values of variablel and variable2, in that order.

int main()

{
using namespace std;
int first_num, second_num;
get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num); forgot
return 0; the & here
}
void swap_values(int variablel, int variable2)
{
int temp; inadvertent
temp = variablel; //Oca’ variables
variablel = variable2;
variable2 = temp;
}

<The definitions of get_numbers and
show_results are the same as in Display 4.4.>

Sample Dialogue

Enter two integers: 5 10
In reverse order the numbers are: 5 10

Class Work

* Canyou

— Write a void-function definition for a function
called zero_both that has two reference
parameters, both
of which are variables of type int, and sets the
values of both variables to 0.

— Write a function that returns a value and has a
call-by-reference parameter?

— Write a function with both call-by-value and
call-by-reference parameters

Using Procedural Abstraction

Using Procedural Abstraction

* Functions should be designed so they can be
used as black boxes

* To use a function, the declaration and
comment should be sufficient

* Programmer should not need to know the
details of the function to use it

Functions Calling Functions

* A function body may contain a call to another
function

— The called function declaration must still appear
before it is called

* Functions cannot be defined in the body of another function

— Example: void order(int& n1, int& n2)

{
if (n1 > n2)
swap_values(nl, n2);

}

* swap_values called if n1 and n2 are not in ascending order
» After the call to order, n1 and n2 are in ascending order

Function Calling Another Function (part 1 of 2)

//Program to demonstrate a function calling another function.
#include <iostream>

void get_input(int& inputl, int& input2);
//Reads two integers from the keyboard.

void swap_values(int& variablel, int& variable2);
//Interchanges the values of variablel and variableZ2.

void order(int& nl, int& n2);
//0Orders the numbers in the variables nl and n2
//so that after the function call nl <= n2.

void give_results(int outputl, 7nt output2);

//Outputs the values in outputl and output?2.
//Assumes that outputl <= output?2

int main()

{
int first_num, second_num;
get_input(first_num, second_num);
order(first_num, second_num);
give_results(first_num, second_num);
return 0;

}

//Uses iostream:
void get_input(int& inputl, int& input2)
{
using namespace std;
cout << "Enter two integers: ";
cin >> inputl >> input2;

Function Calling Another Function (part 2 of 2)

void swap_values(int& variablel, int& variable2)

{

int temp;

temp = variablel;
variablel = variable2;
variable2 = temp;

}

These function
void order(int& nl, int& n2) Zef{n/tlonscan
‘ e in any order.

if (n1 > n2)
swap_values(nl, n2);
}

//Uses iostream:
void give_results(int outputl, 7nt output2)
{
using namespace std;
cout << "In increasing order the numbers are:
<< outputl << " " << output2 << endl;

}

Sample Dialogue

Enter two integers: 10 5
In increasing order the numbers are: 5 10

Pre and Postconditions
e Precondition

— States what is assumed to be true when the
function is called
* Function should not be used unless the precondition holds

e Postcondition
— Describes the effect of the function call

— Tells what will be true after the function is
executed (when the precondition holds)

— If the function returns a value, that value is
described

— Changes to call-by-reference parameters are
described

swap values revisited

e Using preconditions and postconditions the
declaration of swap values becomes:

void swap values(int& nl, int& n2);
//Precondition: variablel and variable 2 have

// been given values
// Postcondition: The values of variablel and
// variable2 have been

// interchanged

Function celsius
* Preconditions and postconditions make the
declaration for celsius:

double celsius(double farenheit);

//Precondition: fahrenheit is a temperature

// expressed in degrees Fahrenheit
//Postcondition: Returns the equivalent temperature
// expressed in degrees Celsius

Preconditions and postconditions?
* Preconditions and postconditions
— should be the first step in designing a function

— specify what a function should do

* Always specify what a function should do before
designing how the function will do it

— Minimize design errors

— Minimize time wasted writing code that doesn’t
match the task at hand

Case Study - Supermarket Pricing

* Problem definition
— Determine retail price of an item given suitable
input
— 5% markup if item should sell in a week

— 10% markup if item expected to take more than
a week

* 5% for up to 7 days, changes to 10% at 8 days
— Input
 The wholesale price and the estimate of days until item sells

— Output

* The retail price of the item

Supermarket Pricing: Analysis
* Three main subtasks
— Input the data
— Compute the retail price of the item
— Output the results
* Each task can be implemented with a
function

— Notice the use of call-by-value and
call-by-reference parameters in the following
function declarations

Supermarket Pricing: get _input

* void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values

// correctly.

//Postcondition: The value of cost has been set to
// the wholesale cost of one item.
// The value of turnover has been
// set to the expected number of

// days until the item is sold.

Supermarket Pricing:Function price

e double price(double cost, int turnover);
//Precondition: cost is the wholesale cost of one

// item. turnover is the expected
// number of days until the item is
// sold.

//Postcondition: returns the retail price of the item

Supermarket Pricing: give output
e void give_output(double cost, int turnover, double

price);

//Precondition: cost is the wholesale cost of one item:
// turnover is the expected time until sale
// of the item; price is the retail price of
// the item.

//Postcondition: The values of cost, turnover, and price
// been written to the screen.

Supermarket Pricing: main function

e With the functions declared, we can write the main
function:

int main()

{
double wholesale cost, retail price;
int shelf _time;

get_input(wholesale_cost, shelf_time);

retail_price = prlce(wholesale cost, shelf_time);
give_output(wholesale cost, shelf_tlme retail _price);
return O;

Supermarket Pricing: Algorithm Design

* Implementations of get_input and
give_output are straightforward, so we
concentrate on
the price function

e pseudocode for the price function

— If turnover <= 7 days then
return (cost + 5% of cost);
else
return (cost + 10% of cost);

Supermarket: Constants for The price Function

* The numeric values in the pseudocode will be

represented by constants
— Const double LOW_MARKUP =0.05; // 5%
— Const double HIGH_MARKUP =0.10; // 10%

— Const int THRESHOLD = 7; // At 8 days use
//HIGH_MARKUP

Coding The price Function
 The body of the price function

—{
if (turnover <= THRESHOLD)
return (cost + (LOW_MARKUP * cost)) ;
else
return (cost + (HIGH_MARKUP * cost)) ;

J

* See the complete program in

Supermarket Pricing (part 1 of 3)

//Determines the retail price of an item according to
//the pricing policies of the Quick-Shop supermarket chain.
#include <iostream>

const double LOW_MARKUP = 0.05; //5%

const double HIGH_MARKUP = 0.10; //10%

const int THRESHOLD = 7; //Use HIGH_MARKUP if do not
//expect to sell in 7 days or less.

void introduction();
//Postcondition: Description of program is written on the screen.

void get_input(double& cost, int& turnover);

//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

double price(double cost, int turnover);

//Precondition: cost is the wholesale cost of one 1item.
//turnover is the expected number of days until sale of the item.
//Returns the retail price of the item.

void give_output(double cost, int turnover, double price);

//Precondition: cost is the wholesale cost of one item; turnover is the
//expected time until sale of the item; price is the retail price of the item.
//Postcondition: The values of cost, turnover, and price have been

//written to the screen.

int main()

{
double wholesale_cost, retail_price;
int shelf_time;

introduction();

get_input(wholesale_cost, shelf_time);

retail_price = price(wholesale_cost, shelf_time);
give_output(wholesale_cost, shelf_time, retail_price);
return 0;

Supermarket Pricing (part 2 of 3)

//Uses iostream:
void introduction()

{
using namespace std;
cout << "This program determines the retail price for\n"
<< "an item at a Quick-Shop supermarket store.\n";
}

//Uses iostream:
void get_input(double& cost, int& turnover)

{
using namespace std;
cout << "Enter the wholesale cost of +item: $";
cin >> cost;
cout << "Enter the expected number of days until sold: ";
cin >> turnover;
}

//Uses iostream:
void give_output(double cost, int turnover, double price)
{
using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "Wholesale cost = $" << cost << endl
<< "Expected time until sold = "
<< turnover << " days" << endl
<< "Retail price = $" << price << endl;

}

//Uses defined constants LOW_MARKUP, HIGH_MARKUP, and THRESHOLD:
double price(double cost, int turnover)
{
if (turnover <= THRESHOLD)
return (cost + (LOW_MARKUP * cost));
else
return (cost + (HIGH_MARKUP * cost));

Supermarket Pricing (part 3 of 3)

Sample Dialogue

This program determines the retail price for

an item at a Quick-Shop supermarket store.
Enter the wholesale cost of item: $1.21

Enter the expected number of days until sold: 5
Wholesale cost = $1.21

Expected time until sold = 5 days

Retail price = $1.27

Supermarket Program Testing

* Testing strategies
— Use data that tests both the high and low markup cases

— Test boundary conditions, where the program is
expected
to change behavior or make a choice
* In function price, 7 days is a boundary condition

e Test for exactly 7 days as well as one day more and one day
less

Class Work

* Canyou

— Define a function in the body of another
function?

— Call one function from the body of another
function?

— Give preconditions and postconditions for the
predefined function sqrt?

Testing and Debugging

Testing and Debugging Functions
Each function should be tested as a separate
unit

Testing individual functions facilitates finding
mistakes

Driver programs allow testing of individual
functions

Once a function is tested, it can be used in
the driver program to test other functions

Driver Program (part 1 of 2)

//Driver program for the function get_input.
#include <iostream>

void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

int main()

{

using namespace std;
double wholesale_cost;
int shelf_time;

char ans;

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

do
{

} while (ans == "y

get_input(wholesale_cost, shelf_time);

cout << "Wholesale cost is now $"
<< wholesale_cost << endl;

cout << "Days until sold is now "
<< shelf_time << endl;

cout << "Test again?"

<< (Type y for yes or n for no):

cin >> ans;
cout << endl;

|| ans == ’Y’);

return 0;

Driver Program (part 2 of 2)

//Uses iostream:
void get_input(double& cost, int& turnover)

{
using namespace std;
cout << "Enter the wholesale cost of item: $";
cin >> cost;
cout << "Enter the expected number of days until sold: ";
cin >> turnover;
}

Sample Dialogue

Enter the wholesale cost of item: $123.45

Enter the expected number of days until sold: 67
Wholesale cost is now $123.45

Days until sold is now 67
Test again? (Type y for yes or n for no): y

Enter the wholesale cost of item: $9.05

Enter the expected number of days until sold: 3
Wholesale cost is now $9.05

Days until sold is now 3
Test again? (Type y for yes or n for no): n

Stubs

* When a function being tested calls other
functions that are not yet tested, use a stub

* Astubis a simplified version of a function

— Stubs are usually provide values for testing
rather than perform the intended calculation

— Stubs should be so simple that you have
confidence they will perform correctly

— Function price is used as a stub to test the rest
of the supermarket pricing program below.

Program with a Stub (part 1 of 2)

//Determines the retail price of an item according to
//the pricing policies of the Quick-Shop supermarket chain.
#include <iostream>

void introduction();
//Postcondition: Description of program is written on the screen.

void get_input(double& cost, int& turnover);

//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

double price(double cost, int turnover);

//Precondition: cost is the wholesale cost of one item.
//turnover is the expected number of days until sale of the item.
//Returns the retail price of the item.

void give_output(double cost, int turnover, double price);

//Precondition: cost is the wholesale cost of one item; turnover is the
//expected time until sale of the item; price is the retail price of the item.
//Postcondition: The values of cost, turnover, and price have been

//written to the screen.

int main()

{
double wholesale_cost, retail_price;
int shelf_time;
introduction();
get_input(wholesale_cost, shelf_time);
retail_price = price(wholesale_cost, shelf_time);
give_output(wholesale_cost, shelf_time, retail_price);
return 0;
}

//Uses iostream: fully tested

void introduction() function
{ /

using namespace std;
cout << "This program determines the retail price for\n"
<< "an item at a Quick-Shop supermarket store.\n";

Program with a Stub (part 2 of 2)

//Uses iostream: fully tested

void get_input(double& cost, int& turnover) ‘*,——-"””imﬂdm”
{

using namespace std;

cout << "Enter the wholesale cost of item: $";

cin >> cost;

cout << "Enter the expected number of days until sold: ";

cin >> turnover;
} function

being tested
//Uses iostream:

void give_output(double cost, int turnover, double price)
{
using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "Wholesale cost = $" << cost << endl
<< "Expected time until sold = "
<< turnover << " days" << end]l
<< "Retail price= $" << price << endl;

}

//This is only a stub: /sfub
double price(double cost, int turnover)
{

return 9.99; //Not correct, but good enough for some testing.

Sample Dialogue

This program determines the retail price for

an item at a Quick-Shop supermarket store.
Enter the wholesale cost of item: $1.21

Enter the expected number of days until sold: 5
Wholesale cost = $1.21

Expected time until sold = 5 days

Retail price = $9.99

Rule for Testing Functions

 Fundamental Rule for Testing Functions

— Test every function in a program in which every
other function in that program has already been
fully tested and debugged.

Class Work

* Canyou
— Describe the fundamental rule for testing
functions?
— Describe a driver program?
— Write a driver program to test a function?

— Describe and use a stub?

— Write a stub?

Home Work

Homework

* Pick any two class work examples and write a
program for them.

