C++ Basics - 2

Rahul Deodhar

@rahuldeodhar
www.rahuldeodhar.com
rahuldeodhar@gmail.com

Homework?

Topics for today

* Formatting Output
e Classwork

Topics for today

e Conditional statements

* Loops (Recursive statements)
* Classwork

Topics for today
e Homework

— Program
— Others

Output formatting

Formatting Real Numbers

Real numbers (type double) produce a variety of outputs

double price = 78.5;
cout << "The price is $" << price << end|;

The output could be any of these:
The price is $78.5
The price is $78.500000
The price is $7.850000e01

The most unlikely output is:
The price is $78.50

Showing Decimal Places

cout includes tools to specify the output of type double

To specify fixed point notation
setf(ios::fixed)

To specify that the decimal point will always be shown
setf(ios::showpoint)

To specify that two decimal places will always be shown
precision(2)

Example:

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "The priceis "
<< price << endl;

Conditional Statements

2.4

Simple Flow of Control

Flow of control = The order in which statements
are executed

Branch = Lets program choose between two
alternatives

Branch Example
To calculate hourly wages there are two choices
Regular time (up to 40 hours)

gross_pay = rate * hours;

Overtime (over 40 hours)
gross_pay = rate * 40+ 1.5 * rate * (hours - 40);

The program must choose which of these
expressions to use

An if-else Statement

#include <iostream>
using namespace std;
int main()
{
int hours;
double gross_pay, rate;

cout << "Enter the hourly rate of pay: $";

cin >> rate;

cout << "Enter the number of hours worked,\n"
<< "rounded to a whole number of hours:

cin >> hours;

if Chours > 40)

gross_pay = rate*40 + 1l.5*rate*(Chours - 40);

else
gross_pay = rate*hours;

cout.setf(ios::fixed);

cout.setf(ios: :showpoint);

cout.precision(2);

cout << "Hours = " << hours << endl;

cout << "Hourly pay rate = $" << rate << endl;
cout << "Gross pay = $" << gross_pay << endl;

return 0;

Sample Dialogue 1

Enter the hourly rate of pay: $20.00
Enter the number of hours worked,
rounded to a whole number of hours: 30
Hours = 30

Hourly pay rate = $20.00

Gross pay = $600.00

Sample Dialogue 2

Enter the hourly rate of pay: $10.00
Enter the number of hours worked,
rounded to a whole number of hours: 41
Hours = 41

Hourly pay rate = $10.00

Gross pay = $415.00

Syntax for an i f-else Statement

A Single Statement for Each Alternative:

11 (Boolean_Expression)

Yes_Statement
else
No_Statement

A Sequence of Statements for Each Alternative:

11 (Boolean_Expression)

{
Yes Statement_1
Yes_Statement_ 2
Yes_Statement_Last

}

else

{

No_Statement 1
No_Statement 2

No_Statement_Last

Designing the Branch
* Decide if (hours >40) is true

— If it is true, then use
gross_pay = rate * 40+ 1.5 * rate * (hours -
40);

— If it is not true, then use
gross_pay = rate * hours;

Implementing the Branch

if-else statement is used in C++ to perform a
branch

if (hours > 40)
gross_pay = rate * 40+ 1.5 * rate * (hours -
40);

else
gross_pay = rate * hours;

Boolean Expressions

 Boolean expressions are expressions that are
either true or false

e comparison operators such as '>' (greater than)
are used to compare variables and/or numbers

— (hours > 40) Including the parentheses, is the
boolean expression from the wages example

— A few of the comparison operators that use two
symbols (No spaces allowed between the symbols!)

 >= greater than or equal to
 I= notequal or inequality
e == equal or equivalent

and boolean operations such as
e &&, | |, and ! which also produce a boolean value

Comparison Operators

Math English
Symbol
= equal o
- not equal to
< less than
< less than or
equal to
> greater than

AV

greater than
or equal to

C++
Notation

>=

C++ Sample

X + 7 == 2%y

ans != 'n
count < m + 3

time <= limit

time > Timit

age >= 21

Math
Equivalent

x+7=2y
ans #'n’
count<m+ 3

time < limit

time > limit

age = 21

if-else Flow Control (1)

 if (boolean expression)
true statement
else
false statement

* When the boolean expression is true
— Only the true statement is executed

* When the boolean expression is false
— Only the false statement is executed

if-else Flow Control (2)

* if (boolean expression)

{ true statements
}
else
{
} false statements

* When the boolean expression is true
— Only the true statements enclosed in { } are executed

* When the boolean expression is false
— Only the false statements enclosed in { } are executed

AND

* Boolean expressions can be combined into
more complex expressions with

— && --The AND operator

- True if both expressions are true
e Syntax: (Comparison 1) && (Comparison 2)
e Example: if((2<x)&&(x<7))

— True only if xis between 2 and 7

— Inside parentheses are optional but enhance
meaning

OR

* | | -- The OR operator (no space!)
— True if either or both expressions are true

 Syntax: (Comparison_1) | | (Comparison_2)

e Example: if ((x==1) | |(x==vy))
— True if x contains 1
— True if x contains the same value as y
— True if both comparisons are true

NOT

| -- negates any boolean expression

—l(x<vy)
 Trueif xis NOT less thany

= lx==y)
 Trueif xis NOT equaltoy

e | Operator can make expressions difficult to
understand...use only when appropriate

Inequalities
* Be careful translating inequalities to C++
e if xX<y<z translates as

if((x<y) &&(y<z))
NOT

if(x<y<z)

Pitfall: Using = or ==
 '="jis the assighment operator
— Used to assign values to variables

— Example: x=3;

 '=="js the equality operator
— Used to compare values

— Example: if (x==3)
* The compiler will accept this error:
if (x =3)
but stores 3 in x instead of comparing x and 3

— Since the result is 3 (non-zero), the expression is
true

Compound Statements

A compound statement is more than one

statement enclosed in {}

Branches of if-else statements often need to
execute more that one statement

Example: if (boolean expression)

true statements

)

else
{

false statements

}

Compound Statements Used with if-else

1f (my_score > your_score)

{
cout << "I win!\n";
wager = wager + 100;
}
else
{

cout << "I wish these were golf scores.\n";
wager = 0;

Evaluating Boolean Expressions

* Boolean expressions are evaluated using
values
from the Truth Tables in

— For example, if y is 8, the expression

((y <3)| [(y>7))
is evaluated in the following sequence

Truth Tables

AND
Exp 1 Exp_2 Exp 1 && Exp_2
true true true
true false false
false true false
false false false

OR
Exp_1 Exp 2 Exp_ 1| | Exp_2
true true true
true false true
false true true
false false false

NOT
Exp (Exp)
true false
false true

Order of Precedence

* If parenthesis are omitted from boolean
expressions, the default precedence of
operations is:

Perform ! operations first

Perform relational operations such as < next

Perform && operations next

= w e

Perform | | operations last

Precedence Rules

* |tems in expressions are grouped by
orecedence
rules for arithmetic and boolean operators

— Operators with higher precedence are
performed
first

— Binary operators with equal precedence are
performed left to right

— Unary operators of equal precedence are
performed right to left

Precedence Rules

The unary operators +, —, ++, --, and !.
The binary arithmetic operations *, /, %
The binary arithmetic operations +, —

The Boo
The Boo
The Boo
The Boo

ean operations <, >, <=, >=

ean operations ==, !
ean operations &&
ean operations | |

Highest precedence
(done first)

Y

Lowest precedence
(done last)

Precedence Rule Example

* The expression
(x+1)>2 | | (x+1)<-3

Is equivalent to
((x+1)>2)]| ((x+1)<-3)

— Because > and < have higher precedence than |

and is also equivalent to
X+1>2 || x+1<-3

Example
* Evaluating
X+1>2 || x+1<-3
* Using the precedence rules of Display 7.2
— First apply the unary —
— Next apply the +'s
— Now apply the >and <
— Finally do the | |

Short-Circuit Evaluation

 Some boolean expressions do not need to be
completely evaluated

— if X is negative, the value of the expression
(x>=0) &&(y>1)
can be determined by evaluating only (x >= 0)

e C++ uses short-circuit evaluation

— If the value of the leftmost sub-expression
determines the final value of the expression, the
rest
of the expression is not evaluated

Using Short-Circuit Evaluation

e Short-circuit evaluation can be used to
prevent
run time errors

— Consider this if-statement

if ((kids !=0) && (pieces / kids >=2))
cout << "Each child may have two pieces!";

— If the value of kids is zero, short-circuit
evaluation
prevents evaluation of (pieces / 0 >= 2)
e Division by zero causes a run-time error

Type bool and Type int

 C++ can use integers as if they were Boolean
values

— Any non-zero number (typically 1) is true
— 0 (zero) is false

Problems with |
 The expression (! time > limit), with limit =
60,
Is evaluated as
(1time) > limit
If time is an int with value 36, what is ltime?

— False! Or zero since it will be compared to an
Integer

The expression is further evaluated as
0 > limit

false

Correcting the | Problem

 The intent of the previous expression was
most likely the expression

(!(time > limit))
which evaluates as

(! (false))
true

Avoiding |
e Just as not in English can make things

not undifficult to read, the ! operator can
make C++ expressions difficult to understand

* Before using the ! operator see if you can
express the same idea more clearly without
the | operator

bool Return Values
A function can return a bool value

— Such a function can be used where a boolean
expression is expected

* Makes programs easier to read

e if (((rate >=10) && (rate < 20)) || (rate == 0))
is easier to read as
if (appropriate (rate))
— If function appropriate returns a bool value

based
on the the expression above

Function appropriate

* To use function appropriate in the if-
statement

if (appropriate (rate))
{ .. }

appropriate could be defined as

bool appropriate(int rate)

{
return (((rate >=10) && (rate < 20)) | | (rate == 0));

}

Branches Conclusion

* Canyou

— Write an if-else statement that outputs the word
High if the value of the variable score is greater
than 100 and Low if the value of score is at most
100? The variables are of type int.

— Write an if-else statement that outputs the word
Warning provided that either the value of the
variable
temperature is greater than or equal to 100, or the
of the variable pressure is greater than or equal to
200, or both. Otherwise, the if _else sttement
outputs
the word OK. The variables are of type int.

The Enum Approach

Enumeration Types (Optional)

* An enumeration type is a type with values
defined by a list of constants of type int

e Example:

— enum MonthLength{JAN_ LENGTH = 31,
FEB LENGTH = 28,
MAR_ LENGTH = 31,

DEC LENGTH =31}

Default enum Values

* If numeric values are not specified, identifiers
are assigned consecutive values starting with
0

— enum Direction { NORTH =0, SOUTH =1,
EAST = 2, WEST = 3};
is equivalent to

enum Direction {NORTH, SOUTH, EAST, WEST};

Enumeration Values

* Unless specified, the value assigned an
enumeration constant is 1 more than the
previous
constant

e Enum MyEnum{ONE =17, TWO, THREE,
FOUR = -3, FIVE};
results in these values

— ONE =17, TWO =18, THREE =19,
FOUR =-3, FIVE=-2

Branching

Multiway Branches

* A branching mechanism selects one out of a
number of alternative actions

— The if-else-statement is a branching mechanism
* Branching mechanisms can be a subpart of
another branching mechanism

— An if-else-statement can include another
if-else-statement as a subpart

Nested Statements

* A statement that is a subpart of another
statement
IS a nested statement

— When writing nested statements it is normal to
indent each level of nesting

— Example: if(x<y)
cout << x << "isless than " <<y;
else
cout <<y << "isless than " << x;

An i f-else Statement within an i7f Statement

if (count > 0)

if (score > 5)

cout << "count > 0 and score > 5\n";

else

cout << "count > 0 and score <= 5\n";

Nested if-else Statements

 Use care in nesting if-else-statements

Example: To design an if-else statement to
warn a driver when fuel is low, but tells the
driver to bypass pit stops if the fuel is close

to full. Other wise there should be no output.

Pseudocode: if fuel gauge is below % then:
if fuel gauge is below % then:
Issue a warning
otherwise (gauge > %) then:
output a statement saying don't stop

First Try Nested if's

* Translating the previous pseudocode to C++
could yield (if we are not careful)

if (fuel_gauge reading < 0.75)
if (fuel gauge reading < 0.25)
cout << "Fuel very low. Caution!\n";
else
cout << "Fuel over 3/4. Don't stop now!\n";

— This would compile and run, but does not produce the
desired results

— The compiler pairs the "else" with the nearest previous "if"

Braces and Nested Statements

* Braces in nested statements are like
parenthesis
in arithmetic expressions

— Braces tell the compiler how to group things

e Use braces around substatements

The Importance of Braces

//ITlustrates the importance of using braces in if-else statements.
#include <iostream>

using namespace std;

int main()

{

double fuel_gauge_reading;

"

cout << "Enter fuel gauge reading: ";
cin >> fuel_gauge_reading;

cout << "First with braces:\n";
if (fuel_gauge_reading < 0.75)
{

if (fuel_gauge_reading < 0.25)

cout << "Fuel very Tow. Caution!\n";

}
else
{

cout << "Fuel over 3/4. Don’t stop now!\n";

}

cout << "Now without braces:\n";
if (fuel_gauge_reading < 0.75) 7w“f"da”?g’ifwa
if (fuel_gauge_reading < 0.25) butis notwhat the
" . " computer follows.
cout << "Fuel very low. Caution!\n";
else
cout << "Fuel over 3/4. Don’t stop now!\n";

return 0;

}
Sample Dialogue 1

Enter fuel gauge reading: 0.1 Braces make no difference in
First with braces: this case, but see Dialogue 2.
Fuel very Tlow. Caution!

Now without braces:

Fuel very low. Caution!

Sample Dialogue 2

Enter fuel gauge reading: 0.5 There should be no output here,
First with braces: /and thanks to braces, there is none.

Now without braces: Incorrect output from the
Fuel over 3/4. Don’t stop now! —e— versionwithoutbraces.

Multi-way if-else-statements
* An if-else-statement is a two-way branch

 Three or four (or more) way branches can be
designed using nested if-else-statements

— Example: The number guessing game with the
number stored in variable number, the
guess in variable guess. How do we
give hints?

Number Guessing

* The following nested statements implement
the hints for our number guessing game

— if (guess> number)
cout << "Too high.";
else
if (guess < number)
cout << "Too low.");
else
if (guess == number)
cout << "Correct!":

Indenting Nested if-else

* Notice how the code on the previous slide
crept
across the page leaving less and less space

— Use this alternative for indenting several nested
if-else-statements:

if (guess> number)
cout << "Too high.";

else if (guess < number)
cout << "Too low.");

else if (guess == number)
cout << "Correct!";

The Final if-else-statement

* When the conditions tested in an if-else-
statement
are mutually exclusive, the final if-else can
sometimes be omitted.

— The previous example can be written as

if (guess> number)
cout << "Too high.";
else if (guess < number)
cout << "Too low.");
else // (guess == number)
cout << "Correct!";

Nested if-else Syntax
* A Multiway if-else statement is written as

— if(Boolean Expression 1)
Statement 1
else if (Boolean Expression 2)
Statement 2

else if (Boolean Expression n)
Statement _n

else
Statement _For All Other Possibilities

Program Example:

* Write a program for a state that computes
tax according to the rate schedule:
No tax on first $15,000 of income

5% tax on each dollar from $15,001
to $25,000

10% tax on each dollar over $25,000

Multiway if-else Statement (part 1 of 2)

//Program to compute state income tax.
#include <iostream>
using namespace std;

double tax(int net_income);

//Precondition: The formal parameter net_income is net income, rounded
//to a whole number of dollars.

//Returns the amount of state income tax due computed as follows:

//no tax on income up to $15,000; 5% on income between $15,001

//and $25,000; 10% on income over $25,000.

int main()

{
int net_income;
double tax_bill;
cout << "Enter net income (rounded to whole dollars) $";
cin >> net_income;
tax_bill = tax(net_income);
cout.setf(jos::fixed);
cout.setf(ios: :showpoint);
cout.precision(2);
cout << "Net income = $" << net_income << end]
<< "Tax bill = $" << tax_bill << endl;
return 0;
}

double tax(int net_income)

{

double five_percent_tax, ten_percent_tax;

Multiway if-else Statement (part 2 of 2)

1f (net_income <= 15000)
return 0;

else 1f ((net_income > 15000) && (net_income <= 25000))
//return 5% of amount over $15,000
return (0.05*(net_income — 15000));

else //net_income > $25,000

{
//five_percent_tax = 5% of income from $15,000 to $25,000.
five_percent_tax = 0.05*%10000;
//ten_percent_tax = 10% of income over $25,000.
ten_percent_tax = 0.10*(net_income — 25000);
return (five_percent_tax + ten_percent_tax);

¥

Sample Dialogue

Enter net income (rounded to whole dollars) $25100
Net income = $25100.00
Tax bill = $510.00

Refining if-else-statements
* Notice that the line

else if ((net_income > 15000
&& net_income < = 25000))

can be replaced with

else if (net_income <= 25000)

— The computer will not get to this line unless it
is already determined that net_income > 15000

Switch Statement

The switch-statement

e The switch-statement is an alternative for
constructing multi-way branches

— Let us consider an example that determines

output based on a letter grade
 Grades'A', 'B', and 'C' each have a branch
e Grades 'D' and 'F' use the same branch

* If aninvalid grade is entered, a default branch is used

A switch Statement (part 1 of 2)

//Program to illustrate the switch statement.
#include <iostream>
using namespace std;

int main()
{

char grade;

cout << "Enter your midterm grade and press Return: ";
cin >> grade;

switch (grade)

{
case 'A’:
cout << "Excellent. "
<< "You need not take the final.\n";
break;
case 'B’:
cout << "Very good. ";
grade = 'A’;
cout << "Your midterm grade is now "
<< grade << endl;
break;
case 'C’:
cout << "Passing.\n";
break;
case 'D’:
case 'F’:
cout << "Not good. "
<< "Go study.\n";
break;
default:
cout << "That is not a possible grade.\n";
}

cout << "End of program.\n";
return 0;

Aswitch Statement (part 2 of 2)

Sample Dialogue 1

Enter your midterm grade and press Return:
Excellent. You need not take the final.
End of program.

Sample Dialogue 2

Enter your midterm grade and press Return:
Very good. Your midterm grade is now A.
End of program.

Sample Dialogue 3

Enter your midterm grade and press Return:
Not good. Go study.
End of program.

Sample Dialogue 4

Enter your midterm grade and press Return:
That i1s not a possible grade.
End of program.

switch-statement Syntax

e switch (controlling expression)

{

case Constant_1:
statement_Sequence 1
break;
case Constant 2.
Statement_Sequence 2
break;

case Constant _n:
Statement _Sequence n
break;
default:
Default _Statement Sequence

The Controlling Statement

* A switch statement's controlling statement
must return one of these types

— A bool value
— An enum constant
— An integer type
— A character
 The value returned is compared to the
constant values after each "case"

— When a match is found, the code for that case is
used

The break Statement

* The break statement ends the switch-
statement

— Omitting the break statement will cause the

code
for the next case to be executed!

— Omitting a break statement allows the use of
multiple case labels for a section of code
e case'A'":
case 'a':
cout << "Excellent.";
break;

e Runs the same code for either 'A' or 'a’

The default Statement

* |f no case label has a constant that matches
the
controlling expression, the statements
following
the default label are executed

— If there is no default label, nothing happens
when
the switch statement is executed

— It is a good idea to include a default section

Switch-statements and Menus

e Nested if-else statements are more versatile
than

a switch statement

e Switch-statements can make some code
more

clear

— A menu is a natural application for a switch-
statement

A Menu (part 1 of 2)

//Program to give out homework assignment information.
#include <iostream>
using namespace std;

void show_assignment();
//Displays next assignment on screen.

void show_grade();
//Asks for a student number and gives the corresponding grade.

void give_hints();
//Displays a hint for the current assignment.

int main()
{

int choice;

do
{
cout << endl
<< "Choose 1 to see the next homework assignment.\n"
<< "Choose 2 for your grade on the last assignment.\n"
<< "Choose 3 for assignment hints.\n"
<< "Choose 4 to exit this program.\n"
<< "Enter your choice and press Return: ";
cin >> choice;

switch (choice)
{
case 1:
show_assignment();
break;
case 2:
show_grade();
break;
case 3:
give_hints();
break;

A Menu (part 2 of 2)

case 4:
cout << "End of Program.\n";
break;

default:
cout << "Not a valid choice.\n"

<< "Choose again.\n";
}
}while (choice != 4);

return O;

<The definitions for the functions show_assignment,
show_grade, and give_hints are inserted here.>

Sample Dialogue

Choose 1 to see the next homework assignment.
Choose 2 for your grade on the last assignment.
Choose 3 for assignment hints.

Choose 4 to exit this program.

Enter your choice and press Return: 3

The exact
Assignment hints: output will
Analyze the problem. depend on the
Write an algorithm in pseudocode. definition of
Translate the pseudocode into a C++ program. the function

give_hints.

Choose 1 to see the next homework assignment.
Choose 2 for your grade on the last assignment.
Choose 3 for assignment hints.

Choose 4 to exit this program.

Enter your choice and press Return: 4

End of Program.

Function Calls in Branches

e Switch and if-else-statements allow the use
of
multiple statements in a branch

— Multiple statements in a branch can make the
switch or if-else-statement difficult to read

— Using function calls (as shown in Display 7.7)
instead of multiple statements can make the
switch or if-else-statement much easier to read

Blocks

e Each branch of a switch or if-else statement is
a separate sub-task

— If the action of a branch is too simple to warrant

a
function call, use multiple statements between
braces

— A block is a section of code enclosed by braces

— Variables declared within a block, are local to
the
block or have the block as their scope.

e Variable names declared in the block can be reused outside
the block

Block with a Local Variable (part 1 of 2)

//Program to compute bill for either a wholesale or a retail purchase.
#include <iostream>

using namespace std;

const double TAX_RATE = 0.05; //5% sales tax.

int main()
{
char sale_type;
int number;
double price, total;

cout << "Enter price $";

cin >> price;

cout << "Enter number purchased: ";

cin >> number;

cout << "Type W if this is a wholesale purchase.\n"
<< "Type R if this is a retail purchase.\n"
<< "Then press Return.\n";

cin >> sale_type;

if ((sale_type == "W’) || (sale_type == "w’))
{
total = price * number;
}
else if ((sale_type == ’R’) || (sale_type == ’'r’))
{ Local to the block
double subtotaW;-——————’—“__—————_
subtotal = price * number;
total = subtotal + subtotal * TAX_ RATE;
}
else
{

cout << "Error 1in input.\n";

Block with a Local Variable (part 2 of 2)

cout.setf(ios::fixed);

cout.setf(ios::showpoint);
cout.precision(2);
cout << number <<
cout << "Total Bill = $" << total;

items at $" << price << endl;

if ((sale_type == ’R’) || (sale_type == ’r’))

cout << including sales tax.\n";

return 0;

}

Sample Dialogue

Enter price: $10.00

Enter number purchased: 2

Type W if this is a wholesale purchase.
Type R if this is a retail purchase.
Then press Return.

R

2 items at $10.00

Total Bill = $21.00 including sales tax.

Statement Blocks

A statement block is a block that is not a
function

oody or the body of the main part of a

orogram

e Statement blocks can be nested in other
statement blocks

— Nesting statement blocks can make code
difficult to read

— It is generally better to create function calls than
to nest statement blocks

Scope Rule for Nested Blocks

* |If a single identifier is declared as a variable in
each of two blocks, one within the other,
then these are two different variables with

the

Sdame nNname

— One of the variables exists only within the inner

b
b

—T

ock and cannot be accessed outside the inner
ock

ne other variable exists only in the outer block

and
cannot be accessed in the inner block

Class work

* Canyou

— Give the output of this code fragment?
{

intx=1;

cout << x << endl;

{
cout << x << endl;
int x = 2;
cout << x << endl;

)

cout << x << endl;

Loops

7.3

C++ Loop Statements

* Aloop is a program construction that repeats
a statement or sequence of statements a
number of times

— The body of the loop is the statement(s)
repeated

— Each repetition of the loop is an iteration

* Loop desigh questions:
— What should the loop body be?
— How many times should the body be iterated?

Simple Loops
 C++includes several ways to create loops
 We start with the while-loop

e Example: while (count _down > 0)

{

cout << "Hello ";
count_down -=1;

J

e Qutput: Hello Hello Hello
when count_down starts at 3

A while Loop

#include <iostream>
using namespace std;
int main()

{

int count_down;

cout << "How many greetings do you want? ";
cin >> count_down;

while (count_down > 0)

{
cout << "Hello ";
count_down = count_down - 1;

}

cout << endl;
cout << "That’s all!\n";

return 0;

}
Sample Dialogue 1

How many greetings do you want? 3
Hello Hello Hello
That’s all!

Sample Dialogue 2

How many greetings do you want? 1
Hello
That’s all!

Sample Dialogue 3

The loop body
is executed
zero times.

How many greetings do you want? 0

_—
-

That’s all!

While Loop Operation
* First, the boolean expression is evaluated

— If false, the program skips to the line following
the
while loop

— If true, the body of the loop is executed

* During execution, some item from the boolean expression
is changed

— After executing the loop body, the boolean
expression is checked again repeating the
process
until the expression becomes false

* A while loop might not execute at all if the
boolean expression is false on the first check

while Loop Syntax

* while (boolean expression is true)

{

statements to repeat

J

— Semi-colons are used only to end the statements
within the loop

 While (boolean expression is true)
statement to repeat

Syntax of the while Statement

A Loop Body with Several Statements:
Do NOT put a

semicolon here.

while (Boolean_Expression) =

{
Statement 1
Statement_2 body
Statement Last

}

A Loop Body with a Single Statement:

while (Boolean_Expression)
Statement —= body

do-while loop

* A variation of the while loop.

* A do-while loop is always executed at least
once
— The body of the loop is first executed

— The boolean expression is checked after the

body
has been executed

e Syntax: do
{

statements to repeat

} while (boolean_expression);

Syntax of the do-while Statement

A Loop Body with Several Statements:

do
{
Statement _1
Statement_2 body

Statement Last

} while (Boolean_Expression) ; Do not forget the

final semicolon.

A Loop Body with a Single Statement:

do
Statement —a—
while (Boolean_Expression)

__ body

A do-while Loop

#include <iostream>
using namespace std;
int main()

{
char ans;
do
{
cout << "Hello\n";
cout << "Do you want another greeting?\n"
<< "Press y for yes, n for no,\n"
<< "and then press return: ";
cin >> ans;
} while (ans == "y’ || ans == 'Y’);
cout << "Good-Bye\n";
return 0;
}

Sample Dialogue

Hello

Do you want another greeting?
Press y for yes, n for no,
and then press return: y
Hello

Do you want another greeting?
Press y for yes, n for no,
and then press return: Y
Hello

Do you want another greeting?
Press y for yes, n for no,
and then press return: n
Good-Bye

Increment/Decrement
* Unary operators require only one operand
— + in front of a number such as +5

— - in front of a number such as -5

* ++ [ncrement operator

— Adds 1 to the value of a variable
X ++;
is equivalentto x=x+1;

e -- decrement operator

— Subtracts 1 from the value of a variable
X -
is equivalentto x=x-1;

Sample Program
e Bank charge card balance of S50

* 2% per month interest

* How many months without payments before
your balance exceeds $100

e After 1 month: S50+ 2% of S50 =S51
o After 2 months: S51 + 2% of S51 =552.02
e After 3 months: $52.02 + 2% of $52.02 ...

Charge Card Program

#include <iostream>

using namespace std;

int main()

{
double balance = 50.00;
int count = 0;

cout << "This program tells you how long it takes\n"
<< "to accumulate a debt of $100, starting with\n"
<< "an 1initial balance of $50 owed.\n"
<< "The interest rate is 2% per month.\n";

while (balance < 100.00)

{
balance = balance + 0.02 * balance;
count++;

}

cout << "After " << count <<
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

cout << "your balance due will be $" << balance << endl;

months,\n";

return 0;

}
Sample Dialogue

This program tells you how long it takes

to accumulate a debt of $100, starting with
an initial balance of $50 owed.

The interest rate is 2% per month.

After 36 months,

your balance due will be $101.99

Inﬁmte Loops

Loops that never stop are infinite loops

 The loop body should contain a line that will
eventually cause the boolean expression to
become false

e Example: Print the odd numbers less than 12

Xx=1;
while (x = 12)
{
cout << x << endl;
X=X+ 2;
}

e Better to use this comparison: while (x < 12)

Class work
* Canyou
— Show the output of this code if x is of type int?
x=10;
while (x > 0)

{

cout << x << endl;
X=X—3;

J

— Show the output of the previous code using the
comparison x < 0 instead of x > 0?

while and do-while

 An important difference between while and
do-while loops:

— A while loop checks the Boolean expression at
the
beginning of the loop

* A while loop might never be executed!

— A do-while loop checks the Boolean expression
at
the end of the loop

* A do-while loop is always executed at least once

* Review while and do-while syntax in

Syntax of the while Statement and do-while Statement

A while Statement with a Single Statement Body

while (Boolean_Expression)

Statement — Body

A while Statement with a Multistatement Body

while (Boolean_Expression)
{

Statement _1

Statement_2

. Body
Statement_Last
}
A do-while Statement with a Single Statement Body
do

Bod
Statement -e——— %

while (Boolean_Expression) ;
A do-while Statement with a Multistatement Body

do
{
Statement _1

Statement 2
Body

.
.

Statement_Last
twhile (Boolean_Expression) ;

The Increment Operator

* We have used the increment operator in
statements such as
number++;
to increase the value of number by one

* The increment operator can also be used in

expressions:
int number = 2;
int value_produced =2 * (humber++);

— (number++) first returns the value of number (2)
to be multiplied by 2, then increments number

to three

number++ vs ++number

 (number++) returns the current value of
number,
then increments number

— An expression using (number++) will use
the value of number BEFORE it is incremented

* (++number) increments number first and
returns
the new value of number

— An expression using (++number) will use
the value of number AFTER it is incremented

* Number has the same value after either
version!

++ Comparisons

* int number = 2;
int value_produced = 2 * (humber++);
cout << value produced << " " << number;

displays 4 3

* int number = 2;
int value _produced = 2* (++number);
cout << value_produced << " " number;

displays 6 3

The Increment Operator as an Expression

//Calorie-counting program.
#include <iostream>
using namespace std;

int main()
{
int number_of_items, count,
calories_for_item, total_calories;

cout << "How many items did you eat today? ";
cin >> number_of_items;

total_calories = 0;

count = 1;

cout << "Enter the number of calories in each of the\n"
<< number_of_items << " ditems eaten:\n";

while (count++ <= number_of_ items)
{
cin >> calories_for_item;
total_calories = total_calories
+ calories_for_item;

cout << "Total calories eaten today = "
<< total_calories << endl;
return 0;

Sample Dialogue

How many items did you eat today? 7

Enter the number of calories in each of the
7 items eaten:

300 60 1200 600 150 1 120

Total calories eaten today = 2431

The Decrement Operator

 The decrement operator (--) decreases the
value

of the variable by one

int number = 8;

int value_produced = number--;
cout << value produced << " " << number;

displays 8 7

* Replacing "number--" with "--number"
displays 7 7

The for-Statement

* A for-Statement (for-loop) is another loop
mechanism in C++
— Designed for common tasks such as adding

numbers
In a given range

— |s sometimes more convenient to use than a
while
loop

— Does not do anything a while loop cannot do

for/while = Loop Comparison

e sum=0;

n=1;
while(n <= 10) // add the numbers 1 - 10
{

sum = sum + n;

N++;

}

* sum=0;

for (n=1; n <=10; n++) //add the numbers 1 - 10
sum = sum + n;

For Loop Dissection

* The for loop uses the same components as
the
while loop in a more compact form

— for (n=1; n <=10; n++)

for Loop Alternative

* Aforloop can also include a variable
declaration

in the initialization action

— for (intn=1;, n<=10; n++)
This line means
e Create a variable, n, of type int and initialize it with 1
e Continue to iterate the body as long as n <= 10
* Increment n by one after each iteration

* For-loop syntax and while loop comparison
are found in

The for Statement

for Statement
Syntax
for (Initialization_Action; Boolean_Expression; Update_Action)
Body_Statement
Example
for (number = 100; number >= 0; number--)
cout << number
<< " bottles of beer on the shelf.\n";

Equivalent while loop
Equivalent Syntax

Initialization_Action;
while (Boolean_Expression)
{
Body_Statement
Update_Action;;
}

Equivalent Example

number = 100;
while (number >= 0)

{
cout << number
<< " bottles of beer on the shelf.\n";
number--;
}
Output

100 bottles of beer on the shelf.
99 bottles of beer on the shelf.

0 bottles of beer on the shelf.

A for Statement

//Illustrates a for Toop.
#include <iostream>
using namespace std;

]) /n/tt'/a//zmg Repeat the loop as
int main() action long as this is true.
{
int sum = O: Done after ?ach |
/ loop body iteration
for (int n = 1; n <= 10; n++) //Note that the variable n is a local
sum = sum + n; //variable of the body of the for Tloop!
cout << "The sum of the numbers 1 to 10 is "
<< sum << endl;
return 0;
3
Output

The sum of the numbers 1 to 10 is 55

for-loop Details

* |nitialization and update actions of for-loops
often contain more complex expressions

— Here are some samples
for(n=1;n<=10; n=n + 2)

for(h=0;n>-100; n=n-7)

for(double x = pow(y,3.0); x> 2.0; x =sqrt(x))

The for-loop Body
* The body of a for-loop can be
— A single statement

— A compound statement enclosed in braces

* Example:
for(int number = 1; number >= 0; number--)

{
// loop body statements

}

* shows the syntax for a for-loop with a multi-
statement body

for Loop with a Multistatement Body

Syntax

for (Initialization_Action; Boolean_Expression; Update_Action)
{

Statement _1

Statement_2

. Body

Statement Last
}

Example

for (int number = 100; number >= 0; number--)

{

cout << number

<< " bottles of beer on the shelf.\n";
1f (number > 0)

cout << "Take one down and pass i1t around.\n";

The Empty Statement
* A semicolon creates a C++ statement

— Placing a semicolon after x++ creates the

statement
X++;

’

— Placing a semicolon after nothing creates an
empty statement that compiles but does
nothing

cout << "Hello" << endl;
’

cout << "Good Bye"<< end|;

Extra Semicolon

* Placing a semicolon after the parentheses of
a
for loop creates an empty statement as the
body of the loop

— Example: for(int count = 1; count <= 10; count++),
cout << "Hello\n";

prints one "Hello", but not as part of the loop!
 The empty statement is the body of the loop
* cout << "Hello\n"; is not part of the loop body!

Local Variable Standard

 ANSI C++ standard requires that a variable
declared in the for-loop initialization section
be local to the block of the for-loop

* Find out how your compiler treats these
variables!

* |f you want your code to be portable, do not
depend on all compilers to treat these
variables
as local to the for-loop!

Which Loop To Use?

* Choose the type of loop late in the design
process

— First design the loop using pseudocode
— Translate the pseudocode into C++

— The translation generally makes the choice of an
appropriate loop clear

— While-loops are used for all other loops when
there
might be occassions when the loop should not
run

— Do-while loops are used for all other loops when
the loop must always run at least once

Choosing a for-loop

e for-loops are typically selected when doing
numeric calculations, especially when using
a variable changed by equal amounts each
time the loop iterates

Choosing a while-loop

* A while-loop is typically used

— When a for-loop is not appropriate

— When there are circumstances for which the
loop
body should not be executed at all

Choosing a do-while Loop

* A do-while-loop is typically used

— When a for-loop is not appropriate

— When the loop body must be executed at least
once

The break-Statement

 There are times to exit a loop before it ends
— If the loop checks for invalid input that would
ruin
a calculation, it is often best to end the loop
* The break-statement can be used to exit a
loop before normal termination
— Be careful with nested loops! Using break only

exits
the loop in which the break-statement occurs

A break Statement in a Loop

//Sums a 1ist of ten negative numbers.
#include <iostream>
using namespace std;

int main()

{
int number, sum = 0, count = 0;
cout << "Enter 10 negative numbers:\n";
while (++count <= 10)
{
cin >> number;
if (number >= 0)
{
cout << "ERROR: positive number"
<< " or zero was entered as the\n"
<< count << "th number! Input ends "
<< "with the " << count << "th number.\n"
<< count << "th number was not added in.\n";
break;
}
sum = sum + number;
}
cout << sum << " is the sum of the first "
<< (count - 1) << " numbers.\n";
return 0;
}

Sample Dialogue

Enter 10 negative numbers:

-1 -2 -34-5-6-7 -8 -9 -10

ERROR: positive number or zero was entered as the
4th number! Input ends with the 4th number.

4th number was not added in.

-6 is the sum of the first 3 numbers.

Class Work

* Canyou

— Determine the output of the following?
for(int count = 1; count < 5; count++)

cout << (2 * count) <<" ";

— Determine which type of loop is likely to be best

for
e Summing a seriessuchas1/2 +1/3+1/4+...+1/10?
* Reading a list of exam scores for one student?

* Testing a function to see how it performs with different
values of its arguments

Desighing Loops

Designing Loops
* Designing a loop involves designing
— The body of the loop

— The initializing statements

— The conditions for ending the loop

7.4

Sums and Products

* A common task is reading a list of numbers
and computing the sum

— Pseudocode for this task might be:
sum =0;
repeat the following this_many times
cin >> next;
sum = sum + next;
end of loop

— This pseudocode can be implemented with a for-

loop
as shown on the next slide

for-loop for a sum

* The pseudocode from the previous slide is
implemented as
int sum =0;
for(int count=1; count <= this_many; count+
+)
{
cin >> next;
sum = sum + next;

}

— sum must be initialized prior to the loop body!

Copyright © 2003 Pearson Education, Inc. Slide 126

Repeat "this many times”

* Pseudocode containing the line
repeat the following "this many
times"
is often implemented with a for-loop

 Afor-loop is generally the choice when there

IS
a predetermined number of iterations

— Example:
for(int count = 1; count <= this_many; count++)

Loop body

for-loop For a Product

* Forming a product is very similar to the sum
example seen earlier

int product = 1;
for(int count=1; count <= this_many; count++)

{
cin >> next;
product = product * next;
}
— product must be initialized prior to the loop
body

— Notice that product is initialized to 1, not O!

Ending a Loop

e The are four common methods to terminate
an input loop

— List headed by size

e When we can determine the size of the list beforehand

— Ask before iterating

e Ask if the user wants to continue before each iteration

— List ended with a sentinel value
e Using a particular value to signal the end of the list

— Running out of input
e Using the eof function to indicate the end of a file

L|st Headed By Size

The for-loops we have seen provide a natural
implementation of the list headed by size

method of ending a loop

— Example: int items;
cout << "How many items in the list?";
cin >> items;
for(int count = 1; count <= items; count++)

{

int number;

cout << "Enter number " << count;
cin >> number;

cout << endl;

// statements to process the number

Ask Before lterating

* A while loop is used here to implement the ask
before iterating method to end a loop
sum = 0;
cout << "Are there numbers in the list (Y/N)?";

char ans;
cin >> ans;

while ((ans ="'Y') || (ans ="y'))

//statements to read and process the number
cout << "Are there more numbers(Y/N)? ";
cin >> ans;

}

List Ended With a Sentinel Value

A while loop is typically used to end a loop using
the list ended with a sentinel value method

cout << "Enter a list of nonnegative integers.\n"
<< "Place a negative integer after the list.\n";
sum = 0;
cin >> number;
while (number > 0)

//statements to process the number
cin >> number;

}

— Notice that the sentinel value is read, but not processed

Running Out of Input

* The while loop is typically used to implement
the running out of input method of ending a
loop

ifstream infile;

infile.open("data.dat");
while (! infile.eof())

{

//read and process items from the file

}

General Methods To Control Loops
 Three general methods to control any loop

— Count controlled loops
— Ask before iterating

— Exit on flag condition

Count Controlled Loops

* Count controlled loops are loops that

determine
the number of iterations before the loop

begins

— The list headed by size is an example of a count
controlled loop for input

Exit on Flag Condition
* Loops can be ended when a particular flag
condition exists

— A variable that changes value to indicate that
some event has taken place is a flag

— Examples of exit on a flag condition for input

e List ended with a sentinel value
* Running out of input

Exit on Flag Caution

* Consider this loop to identify a student with a
grade of 90 or better

intn=1;

grade = compute_grade(n);
while (grade < 90)
{

n++;
grade = compute_grade(n);
}
cout << "Student number " << n
<< " has a score of " << grade << end|;

The Problem

* The loop on the previous slide might not stop
at the end of the list of students if no student
has a grade of 90 or higher

— It is a good idea to use a second flag to ensure
that
there are still students to consider

— The code on the following slide shows a better
solution

The Exit On Flag Solution

* This code solves the problem of having no student
grade at 90 or higher
int n=1;
grade = compute_grade(n);
while ((grade < 90) && (n < number_of_students))

{
// same as before
}
if (grade > 90)
// same output as before
else

cout << "No student has a high score.";

Nested Loops

* The body of a loop may contain any kind of
statement, including another loop

— When loops are nested, all iterations of the

inner loop
are executed for each iteration of the outer loop

— Give serious consideration to making the inner
loop
a function call to make it easier to read your
program

 Shown below are two versions of a program
with nested loops

Nicely Nested Loops (part 1 of 3)

//Determines the total number of green-necked vulture eggs
//counted by all conservationists in the conservation district.
#include <iostream>

using namespace std;

void instructions();

void get_one_total (int& total);

//Precondition: User will enter a 1list of egg counts

//followed by a negative number.

//Postcondition: total is equal to the sum of all the egg counts.

int main()
{

instructions();

int number_of_reports;
cout << "How many conservationist reports are there? ";
cin >> number_of_reports;

int grand_total = 0, subtotal, count;
for (count = 1; count <= number_of_reports; count++)

{

cout << endl << "Enter the report of "
<< "conservationist number " << count << endl;
get_one_total (subtotal);
cout << "Total egg count for conservationist "
<< " number << count << is
<< subtotal << endl;

grand_total = grand_total + subtotal;

cout << endl << "Total egg count for all reports = "
<< grand_total << endl;

return 0;

Nicely Nested Loops (part 2 of 3)

//Uses iostream:
void instructions()

{
cout << "This program tallies conservationist reports\n"

<< "on the green-necked vulture.\n"
<< "Each conservationist’s report consists of\n"
<< "a Tist of numbers. Each number is the count of\n"
<< "the eggs observed in one"
<< " green-necked vulture nest.\n"
<< "This program then tallies”
<< " the total number of eggs.\n";

}

//Uses iostream:
void get_one_total (int& total)
{
cout << "Enter the number of eggs in each nest.\n"
<< "Place a negative integer"

<< at the end of your Tist.\n";

total = 0;
int next;
cin >> next;

while (next >= 0)

{
total = total + next;
cin >> next;

}

Nicely Nested Loops (part 3 of 3)

Sample Dialogue

This program tallies conservationist reports
on the green-necked vulture.

Each conservationist’s report consists of

a list of numbers. Each number is the count of
the eggs observed in one green-necked vulture nest.
This program then tallies the total number of eggs.
How many conservationist reports are there? 3

Enter
Enter
Place
100
Total

Enter
Enter
Place
031
Total

Enter
Enter
Place
-1

Total

Total

the report of conservationist number 1

the number of eggs in each nest.

a negative integer at the end of your Tist.
2 -1

egg count for conservationist number 1 is 3

the report of conservationist number 2

the number of eggs in each nest.

a negative integer at the end of your Tist.
-1

egg count for conservationist number 2 is 4

the report of conservationist number 3
the number of eggs in each nest.
a negative integer at the end of your Tist.

egg count for conservationist number 3 is 0O

egg count for all reports = 7

Explicitly Nested Loops

//Determines the total number of green-necked vulture eggs
//counted by all conservationists in the conservation district.
#include <iostream>

using namespace std;

void instructions();

int main()

{

}

instructions();

int number_of_reports;
cout << "How many conservationist reports are there? ";
cin >> number_of_reports;

int grand_total = 0, subtotal, count;

for (count = 1; count <= number_of_reports; count++)
{
cout << endl << "Enter the report of "
<< "conservationist number " << count << endl;
cout << "Enter the number of eggs in each nest.\n"
<< "Place a negative integer"
<< " at the end of your Tist.\n";
subtotal = 0;
int next;
cin >> next;

while (next >= 0)

{
subtotal = subtotal + next;
cin >> next;

}

cout << "Total egg count for conservationist "
<< " number " << count << is
<< subtotal << endl;

grand_total = grand_total + subtotal;

n "

}

cout << endl << "Total egg count for all reports = "
<< grand_total << endl;
return 0;

<The definition of instructions is the same as in Display 7.15.>

Debugging Loops

e Common errors involving loops include

— Off-by-one errors in which the loop executes
one too many or one too few times

— Infinite loops usually result from a mistake
in the Boolean expression that controls
the loop

Fixing Off By One Errors

* Check your comparison:
should it be < or <=7

e Check that the initialization uses the
correct value

* Does the loop handle the zero iterations
case?

Fixing Infinite Loops

* Check the direction of inequalities:
< or >7

* Test for < or > rather than equality (==

— Remember that doubles are really only
approximations

More Loop Debugging Tips
* Be sure that the mistake is really in the loop

* Trace the variable to observe how the
variable
changes
— Tracing a variable is watching its value change
during

execution
* Many systems include utilities to help with this

— cout statements can be used to trace a value

Debuggmg Example

 The following code is supposed to conclude

with the variable product containing the
product

of the numbers 2 through 5

int next = 2, product = 1;
while (next < 5)
{
next++;
product = product * next;

}

Tracing Variables

 Add temporary cout statements to trace
variables

int next = 2, product = 1;
while (next < 5)
{
next++;
product = product * next;
cout << "next =" << next

<< "product =" << product
<< endl;

Flrst Fix

The cout statements added to the loop show us
that the loop never multiplied by 2

— Solve the problem by moving the statement next++

int next = 2, product = 1;
while (next < 5)

product = product * next;
next++;

cout << "next =" << next
<< "product =" << product
<< endl;

}

— There is still a problem!

Second Fix
* Re-testing the loop shows us that now the

loop
never mulitplies by 5

— The fix is to use <= instead of < in our
comparison

int next = 2, product = 1;
while (next <= 5)

{

product = product * next;
next++;

}

Loop Testing Guidelines

* Every time a program is changed, it must be
retested

— Changing one part may require a change to
another

* Every loop should at least be tested using
Input to cause:

— Zero iterations of the loop body

— One iteration of the loop body

— One less than the maximum number of
Iterations

— The maximum number of iteratons

Starting Over

e Sometimes it is more efficient to throw out a
buggy program and start over

— The new program will be easier to read
— The new program is less likely to be as buggy

— You may develop a working program faster than
if you repair the bad code

* The lessons learned in the buggy code will help you
design a better program faster

Class Work

* Canyou
— Describe how to trace a variable?

— List possible solutions to an off-by-one error?

— Determine the number of fence posts needed
for a 100 meter long fence?

Homework

* Pick any of the Class work and write a code
for it.

