C++ Basics

Rahul Deodhar

@rahuldeodhar
www.rahuldeodhar.com
rahuldeodhar@gmail.com

Homework?

Topics for today

* Basic Input Output

Topics for today
* Variables

— Data types

— Identifiers

— Declarations

 Global and Local Declarations
— Assignment
— Uninitialized variables

e Class work!

Topics for today
* Operators
— Input/Output Operators

— Mathematical Operators
* Multiple Operators

— Increment and Decrement Operators
— Boolean Operators
— Other important operators / identifiers

e Classwork!

Topics for today
e Homework

— Program
— Others

Basic Input Output

Input Output
e Std::cin>>

e Std::cout>> “statement output”;

* Std::cout>>x; //variable output

* Namespace in brief
— Other part after functions, classes etc.
— Using Namespace std;
— Cin>>x;

— Cout>>y;

Special characters

Adds newline cursor goes to start of next

i line

\t Moves cursor by one tab

\r Carriage return, cursor goes to start of same line
\a Alert sound, using system speaker

\\ Enters backslash character

\” Enters quotation mark

The datatype of the variable determines the operations indicated by the operator.
This is called "Overloading" or "Operator overloading" specifically

Variables

Variables in C++
e C++is a strongly-typed language, and

requires every variable to be declared with its
type before its first use.
* Variables have three parts
— Data type
— ldentifier
— Value

Default Datatypes

Data Type Range Examples Comments
Bool True / False True /False
char one ASCII character a, $,\n, \a
Int
Short -32767 to 32767 1, 15, 10,500 2 bytes
Long (also Int) 21;112%%177 0 500,000 4 bytes
Float 10/ (-38) to 10/ (38) 7 digits 4 bytes
Double 107 (-308) to 10/ (308) 15 digits 8 bytes
Long Double 107\ (-4932) to 10/ (4932) 15 digits 10 bytes
String

C++11 Hint

You can use the type of an initializer as the type of a variable

— autox=1; // 1lisanint, soxisan int
— autoy="c’; // 'c"is achar, sovyis achar
— autod=1.2; // 1.2 is a double, so d is a double

— auto s = "Howdy"; // "Howdy" is a string literal of type const char|]
// so don’t do that until you know what it means!

— auto sq = sqrt(2); // sq is the right type for the result of sqrt(2)
// and you don’t have to remember what that is

ldentifiers in C++

e Starts with a letter, contains letters, digits, and
underscores (only)

— X, number_of elements, Fourier_transform, z2

— Not names:
e 12X
* timeStoSmarket
* main line

— Do not start names with underscores: foo
* those are reserved for implementation and systems entities

e Users can't define names that are taken as
keyword

 Variable identifiers are case sensitive
— Radius <> radius

Keywords in C++

* Some Keywords

— alignas, alignof, and, and_eq, asm, auto, bitand, bitor, bool,
break, case, catch, char, charl6_t, char32_t, class, compl, const,
constexpr, const_cast, continue, decltype, default, delete, do,
double, dynamic_cast, else, enum, explicit, export, extern, false,
float, for, friend, goto, if, inline, int, long, mutable, namespace,
new, noexcept, not, not_eq, nullptr, operator, or, or_eq, private,
protected, public, register, reinterpret_cast, return, short,
signed, sizeof, static, static_assert, static_cast, struct, switch,
template, this, thread local, throw, true, try, typedef, typeid,
typename, union, unsigned, using, virtual, void, volatile, wchar t,
while, xor, xor_eq

 And others...
* Keywords can appear inside comments (inline / block)

Choose meaningful identifiers

* Abbreviations and acronyms can confuse people
— mtbf, TLA, myw, nbv
* Short names can be meaningful

— (only) when used conventionally:

* xis alocal variable
* iisaloop index / counter

 Don't use overly long names
— Ok:

e partial_sum
element_count
staple_partition

— Too long:

 the_number_of elements
remaining_free_slots in_the _symbol table

Declarations
° Int X;

° IntXx,y,

* |nt x=5;

* Int x(25), y(32), z;
* Int x{25}, y{32};

Local and Global Declarations
* Global Declarations

— Declared outside main()

— AND

— Right after header files

 Local Declarations
— Within main()

* |Int konstant;

— Within functions ()

* Int Func_konstant;

Assignment
* Method 1

— Int Xx;

—x=75; // Assignment
* Method 2

— Int x=5;

— Int x(5);

— Int x {5};

Assignment - Important

* When the variables are declared, they have
an undetermined value until they are
assigned a value for the first time.

Type Compatibilities
* |In general store values in variables of the
same type

— This is a type mismatch:
int int_variable;
int_variable = 2.99;

— If your compiler allows this, int_variable will
most likely contain the value 2, not 2.99

int <—> double (part 1)

e Variables of type double should not be
assighed
to variables of type int

int int_variable;
double double variable;

double variable = 2.00;
int_variable = double_variable;

— If allowed, int_variable contains 2, not 2.00

int €<—2> double (part 2)

* Integer values can normally be stored in
variables of type double

double double variable;
double variable = 2;

— double_variable will contain 2.0

char € =2 int

* The following actions are possible but
generally not
recommended!

* |Itis possible to store char values in integer
variables

int value ="'A";

value will contain an integer representing ‘A’

* |tis possible to store int values in char
variables
char letter = 65;

bool €& =2 int

* The following actions are possible but
generally
not recommended!

* Values of type bool can be assigned to int
variables
— True is stored as 1
— False is stored as O

* Values of type int can be assigned to bool
variables
— Any non-zero integer is stored as true
— Zero is stored as false

Class Work - Variables

* What would be data type of following
variables:

Pi / Area / length / breadth

Height / Weight / Roll no.

Name / Class room / Marks / Rank / Grade

Salary / Pan Card No. / Income tax due

Flight No. / Flight status / No. of Passengers / Seats available
Car Number / Driving License No. / Passport No.

* Advanced data types will be covered
subsequently.

Operators

Types of operators

Assignment Operator (=)
e Arithmetic operators (+, -, *, /, %,")
* Compound assignment (+=, -=, *=, /=, %=)
* Increment and Decrement Operators (++, --)
e Relational and comparison operators (==, !=, >, <, >=, <=)
e Logical operators (!, &&, ||)
e Conditional ternary operator (?)
— c=(a>b)?a:b;
e Comma operator (,)
— a=(b=3, b+2);
e Bitwise operators (&, |, », ~, <<, >>)
e Explicit typecasting operator
— i=(int) f;

Precedence
e BODMAS

Arithmetic

* Arithmetic is performed with operators
— + for addition
— - for subtraction
— * for multiplication
— / for division

e Example: storing a product in the variable
total weight

total weight = one _weight *
number_of bars;

Results of Operators

* Arithmetic operators can be used with any
numeric type

 An operand is a number or variable
used by the operator

Result of an operator depends on the types
of operands

— If both operands are int, the result is int

— If one or both operands are double, the result is
double

Division of Doubles

e Division with at least one operator of type double
produces the expected results.

double divisor, dividend, quotient;
divisor = 3;

dividend = 5;

quotient = dividend / divisor;

— quotient = 1.6666...

— Result is the same if either dividend or divisor is
of type int

Division of Integers
* Be careful with the division operator!

— int / int produces an integer result
(true for variables or numeric constants)

int dividend, divisor, quotient;
dividend = 5;

divisor = 3;

quotient = dividend / divisor;

— The value of quotientis 1, not 1.666...

— Integer division does not round the result, the
fractional part is discarded!

Integer Remainders
* % operator gives the remainder from integer

division
* int dividend, divisor, remainder;
dividend = 5;
divisor = 3;
remainder = dividend % divisor;

The value of remainder is 2

Arithmetic Expressions

* Use spacing to make expressions readable
— Which is easier to read?

Xx+ty*z or x+y*z

* Precedence rules for operators are the same as
used in your algebra classes

* Use parentheses to alter the order of operations
x+y*z (yismultiplied by z first)
(x+vy)*z (xandy are added first)

Operator Shorthand

* Some expressions occur so often that C++
contains to shorthand operators for them

e All arithmetic operators can be used this way

— += count=count+2; becomes
count += 2;

— *= bonus = bonus * 2; becomes
bonus *=2;

— /= time =time / rush_factor; becomes
time /= rush_factor;

— %= remainder = remainder % (cntl+ cnt2);

becomes
remainder %= (cntl + cnt2);

Assignment and increment

 Examples of Assighment
— inta=7;// avariable of type int called a
— // initialized to the integer value 7
—a=9; //assighment: now change a's valueto 9
— a =a+a; // assignment: now double a's value
—a+=2; //increment a's value by 2
— ++a; // increment a's value (by 1)

— --a; [/reducesvalue of aby 1

 Difference between ++a and a++;

— Int a

Operators & their function

String Numbers
cin>> Reads the word Reads the number
COUt<< Writes the word Writes the number

-+ Concatenates Adds
+=35 OR +=n Adds String "s" at the end Increments number by "'n”
++ Error Increments by 1

Error

subtracts

Classwork

o .|..|./__

* String operators

e Solve equation

Revision

Bool
char

Local
G?:):Zal Int (long, short, unsigned)
Float (double, long double)
tring
Declaration Data
types
Variables Strong typed
Key words
Assignment

Type

compatibility

Increment
Relational Decrement

Compound

Assignment

Logical

Conditional
Ternary

Operators Assignment

Comma
Operator

v

Typecastin
g

Precedence

Homework
e Hello World!

* Hello Mr. X! Have a great day!

e Circle
— Area of circle

* Input = radius
* Input as a diameter
* Input as choice = radius / diameter

— Circumference of the circle
— Global variable declarations
— Others

