Structured Languages
Rahul Deodhar

You already know

Basics of computer
Database

— FoxPro / Oracle
— DBMS / RDBMS

Operating System

— DOS / Novel/Unix

Applications (Spreadsheets / Word processor)
Basics of programming languages

— C’

Compiler/Interpreter

Syllabus

* Basics * OOPs advanced
— Basic data types — Classes & Objects
— Arrays — Inheritance
— Functions — Polymorphism
— Pointers & References — Public and private
— Structures * Functions
_ Constructor e Data variables
Destructor — Container classes
— Operator Overloading — Virtual functions
* OOPS basics
— Why OOPs?

— Advantages

Syllabus

* Java Basics
— Why Java
— Advantages
— Platform independence

* Language basics

— Java Application string
& string buffer

— Input / Output
— Syntax

— Data types

— Functions

Java Exception
handling

Multi-threading
sessions

Java .net (Networking
and Security
Networking with URLs)

Database access JDBC
and Sql.

JFC swing
Java 20 drag and drop

Choicel

Types of Programming languages

Machine Language

e Strings of numbers giving machine specific
Instructions

 Example:

Assembly Language

* English-like abbreviations representing
elementary computer operations (translated
via assemblers)

* Example:

High Level Language

* Codes similar to everyday English
 Use mathematical notations (translated via
compilers)

 Example:
grossPay = basePay + overTimePay

Structured Programming

Structured Programming
e Structured programming (1960s)

— Disciplined approach to writing programs

— Clear, easy to test and debug, and easy to modify
* Pascal

— 1971: Niklaus Wirth

e Ada

— 1970s - early 1980s: US Department of Defense
(DoD)

— Multitasking

* Programmer can specify many activities to run in parallel

e C

11

Questions?

Some High Level Languages

Brief Introduction

Some High-level Languages

* FORTRAN
— FORmula TRANslator
— 1954-1957: IBM
— Complex mathematical computations

e Scientific and engineering applications

* COBOL
— COmmon Business Oriented Language
— 1959: computer manufacturers, government and industrial computer users
— Precise and efficient manipulation of large amounts of data

 Commercial applications

e Pascal
— Prof. Niklaus Wirth
— Academic use

14

History of C
e C
— Evolved by Ritchie
— Used to develop UNIX
— Used to write modern operating systems
— Hardware independent (portable)
— By late 1970's C had evolved to "Traditional C"

e Standardization

— Many slight variations of C existed, and were
incompatible

— Committee formed to create a "unambiguous,
machine-independent" definition

— Standard created in 1989, updated in 1999

15

The C Standard Library

* C programs consist of pieces/modules called
functions

— A programmer can create his own functions
* Advantage: the programmer knows exactly how it works
* Disadvantage: time consuming

— Programmers will often use the C library
functions

e Use these as building blocks

— Avoid re-inventing the wheel

* If a premade function exists, generally best to use it rather
than write your own

e Library functions carefully written, efficient, and portable

16

Object Technology

 Reusable software components that model items
in the real world

 Meaningful software units

— Date objects, time objects, paycheck objects,

invoice objects, audio objects, video objects, file
objects, record objects, etc.

— Any noun can be represented as an object
* Very reusable

 More understandable, better organized, and
easier to maintain than procedural programming

* Favor modularity

17

C++

e Superset of C developed by Bjarne Stroustrup
at Bell Labs

e "Spruces up"” C, and provides object-oriented
capabilities

* Object-oriented design very powerful
— 10 to 100 fold increase in productivity
* Dominant language in industry and academia

e Because C++ includes C, some feel it is best to
master C, then learn C++

Java
e Javais usedto

— Create Web pages with dynamic and interactive
content

— Develop large-scale enterprise applications
— Enhance the functionality of Web servers

— Provide applications for consumer devices (such
as cell phones, pagers and personal digital
assistants)

19

* BASIC
— Beginner’ s All-Purpose Symbolic Instruction Code

— Mid-1960s: Prof. John Kemeny and Thomas Kurtz
(Dartmouth College)

e Visual Basic
— 1991

e Result of Microsoft Windows graphical user interface (GUI)
— Developed late 1980s, early 1990s

— Powerful features

e GUI, event handling, access to Win32 API, object-oriented
programming, error handling

— Visual Basic .NET

20

 Visual C++

21

— Microsoft’ s implementation of C++

* Includes extensions
* Microsoft Foundation Classes (MFC)

e Common library
— GUI, graphics, networking, multithreading, ...
— Shared among Visual Basic, Visual C++, C#

NET platform

— Web-based applications

* Distributed to great variety of devices
— Cell phones, desktop computers

— Applications in disparate languages can
communicate

22

CH

— Pronounced “C-Sharp”

— Anders Hejlsberg and Scott Wiltamuth (Microsoft)
— Designed specifically for .NET platform

— Roots in C, C++ and Java
* Easy migration to .NET

— Event-driven, fully object-oriented, visual
programming language

— Integrated Development Environment (IDE)
e Create, run, test and debug C# programs
e Rapid Application Development (RAD)

— Language interoperability

Basics of Programming Languages

Basics of programming language
* Data types
* Syntax
— Operations
— Special characters
— definitions
— Calls
— References
— arguments
* |nput/ Output
* Functions and Loops
* Exception handling

Basics of Program

How program works
* |Input
* Operations
— Assumptions or standard variables
— Algorithm
* Qutput
— Nature of output
— Name of variable
— Data-type
— Output format

Program basics

Headers
Definitions
Inputs
Functions etc.
Outputs

Other elements
— Comments (line comment / block comment)

Program
* Pre-work
— Define objectives
— Inputs
— Qutputs
— Algorithm
* Write program
* Compile and debug
* Executable program

A typical program working

Basic C++ Program

// A basic C++ program

// This is a line comment
#include <iostream> // Preprocessor Directive

int main()

{

]

2

3

4

S5 //function main begins program execution
6

/

8 std::cout << "Welcome to C++!\n";

9

10 return 0; //indicate that program ended successfully
11

12 }// end function main

Welcome to C++!

Typical program working

1. Edit
2. Preprocess

3.Compile
4.Link

5.Load

6. Execute

Primary Memory

Program is created in the
editor and stored on disk.

Preprocessor program
processes the code.

Compiler creates object
code and stores it on

disk.

Linker links the object
code with the libraries

Loader puts program in
memory.

Primary MemorY

CPUtakes each

instruction and
executes it, possibly
storing new data values
as the program
executes.

