Rahul Deodhar

www.rahuldeodhar.com
@rahuldeodhar
rahuldeodhar@gmail.com
+91 98202 13813

Introduction to Arrays

1 An array is used to process a collection of data
of the same type

1 Examples: Alist of names
A list of temperatures

d Why do we need arrays?

1 Imagine keeping track of 5 test scores, or 100, or
1000 in memory
1 How would you name all the variables?

L How would you process each of the variables?

Declaring an Array

1 An array, named score, containing five variable:
of type int can be declared as
int score| 5 |;

U This is like declaring 5 variables of type int:
score|[0], score|1], ..., score[4]

] The value in brackets is called
1 A subscript
J An index

The Array Variables

[The variables making up the array are
referred to is

 Indexed variables

1 Subscripted variables

1 Elements of the array

1 The number of indexed variables in an array
is the declared size, or size, of the array

1 The largest index is one less than the size

 The first index value is zero

Array Variable Types

[An array can have indexed variables of any
type

 All indexed variables in an array are of the
same type

 This is the base type of the array

 An indexed variable can be used anywhere an
ordinary variable of the base type is used

Using | | With Arrays

 In an array declaration, []'s enclose the size
of the array such as this array of 5 integers:
int score [5];

(1 When referring to one of the indexed variables,
the [|'s enclose a number identifying one of
the indexed variables

[score[3] is one of the indexed variables

1 The value in the []'s can be any expression that
evaluates to one of the integers 0 to (size -1)

Indexed Variable Assignment

[To assign a value to an indexed variable, use
the assignment operator:
intn=2;
score|[n + 1] =99;
A In this example, variable score[3] is assigned 99

Loops And Arrays

 for-loops are commonly used to step through
arrays

1 Example: for (i=0;i<05;i++)
{

cout << score[i] << " off by "
<< (max - score|i]) << endl;

}

could display the difference between each score
and the maximum score stored in an array.

 Index size starts with 0 and ends with (size - 1)

Program Using an Array

//Reads in 5 scores and shows how much each
//score differs from the highest score.
#include <iostream>

int main()

{
using namespace std;
int i, score[5], max;

cout << "Enter 5 scores:\n";
cin >> score[0];
max = score[0];
for (i =1; 1 < 5; i4++)
{

cin >> scorel[i];

if (score[i] > max)

max = scorel[i];

//max is the largest of the values score[0],..

}

cout << "The highest score is " << max << endl
<< "The scores and their\n"
<< "differences from the highest are:\n";
for (i =0; 1 < 5; i++)
cout << score[i] << " off by "
<< (max — score[i]) << endl;

return 0;

}

Sample Dialogue

Enter 5 scores:

592106

The highest score is 10

The scores and their

differences from the highest are:
5 off by 5

9 off by 1

2 off by 8

10 off by 0

6 off by 4

L]

score[i].

Constants and Arrays

] Use constants to declare the size of an array

1 Using a constant allows your code to be easily
altered for use on a smaller or larger set of data

d Example: constint NUMBER_OF_STUDENTS = 50;
int score[NUMBER_OF_STUDENTS];

for (i=0;1<NUMBER_OF_STUDENTS; i++)
cout << score|i] << " off by "
<< (max - score[i]) << end];
[Only the value of the constant must be changed to make
this code work for any number of students

Variables and Declarations

1 Most compilers do not allow the use of a
variable
to declare the size of an array

Example: cout << "Enter number of students: ";
cin >> number;
int score[number];

 This code is illegal on many compilers

Array Declaration Syntax

[To declare an array, use the syntax:
Type_Name Array_Name|Declared_Size];

d Type_Name can be any type

 Declared_Size can be a constant to make your
program more versatile

 Once declared, the array consists of the
indexed variables:

Array_Name|0] to Array_Name]|Declared_Size -1]

Computer Memory

1 Computer memory consists of numbered
locations called bytes

1 A byte's number is its address

A simple variable is stored in consecutive
bytes
(d The number of bytes depends on the variable's
type
A variable's address is the address of its first
byte

Arrays and Memory

 Declaring the array int a[6]

] Reserves memory for six variables of type int
1 The variables are stored one after another

1 The address of a[0] is remembered

 The addresses of the other indexed variables is not
remembered

1 To determine the address of a[3]
1 Start at a[0]

U Count past enough memory for three integers to find a[3]

An Array in Memory

address of a[0]

T~

On this computer each
indexed variable uses

2 bytes, so a[3] begins
2 X3 = 6 bytes after

the start of a[0]. \

There is no indexed
variable a[6], but if

would be here.

there were one, it \<

/<

There is no indexed
variable a[7], but if
there were one, it
would be here.

int a[6];

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

VVVVVV

=
=

al0]
all]
al2]
al[3]
al4]

al[5]

some variable
named stuff
some variable
named more_stuff

Array Index Out of Range

d A common error is using a nonexistent index

 Index values for int a[6] are the values 0 through
5

1 An index value not allowed by the array
declaration is out of range

1 Using an out of range index value does not
produce an error message!

Out of Range Problems

 If an array is declared as: int a]6];
and an integer is declared as: int1i = 7;

 Executing the statement a[i] = 238; causes...
1 The computer to calculate the address of the illegal a[7]

(This address could be where some other variable is
stored)

The value 238 is stored at the address calculated for a[7]

1 No warning is given!

[nitializing Arrays
U To initialize an array when it is declared

 The values for the indexed variables are enclosed
in braces and separated by commas

 Example: intchildren[3]={2, 12, 1};
[s equivalent to:
int children|3];
children|0] = 2;
children|1] = 12;
children|2] = 1;

Default Values

 If too few values are listed in an initialization
statement

J The listed values are used to initialize the first of
the indexed variables

1 The remaining indexed variables are initialized to
a zero of the base type
d Example: inta[10]={5,5};
initializes a]0] and a|1] to 5 and
al2] through a[9] to 0

Un-initialized Arrays

 If no values are listed in the array declaration,
some compilers will initialize each variable to a
zero of the base type

1 DO NOT DEPEND ON THIS!

Class Work
 Can you

[Describe the difference between a[4] and int a[5]?

1 Show the output of

char symbol[3] = {'a’, 'b’, 'c'};
for (intindex = 0; index < 3; index++)
cout << symbol|index];

Arrays in Functions

 Indexed variables can be arguments to
functions

Example: If a program contains these declarations:
inti, n,a[10];
void my_function(int n);

Variables a|0] through a[9] are of type int, making
these calls legal:
my_function(a 0]);
my_function(a 3]);
my_function(aJ i]);

Indexed Variable as an Argument

//ITlustrates the use of an indexed variable as an argument.
//Adds 5 to each employee’s allowed number of vacation days.
#include <iostream>

const int NUMBER_OF_EMPLOYEES = 3;

int adjust_days(int old_days);
//Returns old_days plus 5.

int main()

{
using namespace std;
int vacation[NUMBER_OF_EMPLOYEES], number;
cout << "Enter allowed vacation days for employees 1"
<< " through " << NUMBER_OF_EMPLOYEES << ":\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cin >> vacation[number-1];
for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cout << "Employee number " << number
<< " vacation days = " << vacation[number-1] << endl;
return 0;
}
int adjust_days(int old_days)
{
return (old_days + 5);
}

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:
10 20 5
The revised number of vacation days are:

Employee number 1 vacation days = 15
Employee number 2 vacation days = 25
Employee number 3 vacation days = 10

Arrays as Function Arguments

A formal parameter can be for an entire array

1 Such a parameter is called an array parameter
O It is not a call-by-value parameter
U It is not a call-by-reference parameter

U Array parameters behave much like call-by-reference
parameters

Array Parameter Declaration

 An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a|], int size);

Function Calls With Arrays

U If function fill_up is declared in this way:
void fill_up(int a|], int size);

and array score is declared this way:
int score|[5], number_of_scores;

fill_up is called in this way:
fill_up(score, number_of_scores);

Function with an Array Parameter

Function Declaration
void fill_up(int all, int size);
//Precondition: size is the declared size of the array a.
//The user will type in size integers.
//Postcondition: The array a is filled with size integers
//from the keyboard.

Function Definition

//Uses iostream:
void fill_up(int all, int size)
{

using namespace std;

cout << "Enter " << size <<

for (int i = 0; 1 < size; i++)

cin > ali]l;
size--;
cout << "The last array index used is

numbers:\n";

<< size << endl;

Function Call Details

1 A formal parameter is identified as an array
parameter by the [|'s with no index expression

void fill_up(int a|], int size);

1 An array argument does not use the [|'s

fill_up(score, number_of_scores);

Array Formal Parameters

[An array formal parameter is a placeholder for
the argument
d When an array is an argument in a function call,

an action performed on the array parameter is
performed on the array argument

1 The values of the indexed variables can be changed
by the function

Array Argument Detalils

d What does the computer know about an array?
 The base type
1 The address of the first indexed variable

d The number of indexed variables

d What does a function know about an array
argument?

 The base type

1 The address of the first indexed variable

Array Parameter Considerations

1 Because a function does not know the size of
an array argument...

1 The programmer should include a formal
parameter that specifies the size of the array

 The function can process arrays of various sizes

1 Function fill_up (below) can be used to fill an array of
any size:

fill_up(score, 5);
fill_up(time, 10);

const Modifier

 Array parameters allow a function to change
the values stored in the array argument

4 If a function should not change the values of
the array argument, use the modifier const

1 An array parameter modified with constis a

constant array parameter

d Example:
void show_the_world(const int a[], int size);

Using const With Arrays

U If const is used to modify an array parameter:

] constis used in both the function declaration and
definition to modify the array parameter

1 The compiler will issue an error if you write code
that changes the values stored in the array
parameter

Function Calls and const

 If a function with a constant array parameter
calls another function using the const array
parameter as an argument...

 The called function must use a constant
array parameter as a placeholder for the array

- The compiler will issue an error if a function is
called that does not have a const array parameter
to

accept the array argument

const Parameters Example

J double compute_average(int a[], int size);

void show_difference(const int a[|, int size)

{

double average = compute_average(a, size);

}

J compute_average has no constant array parameter

1 This code generates an error message because
compute_average could change the array parameter

Returning An Array

J Recall that functions can return a value of
type int, double, char, ..., or a class type

 Functions cannot return arrays

d We learn later how to return a pointer to an
array

Case Study: Production Graph

] Problem Definition:

(d We are writing a program for the Apex Plastic
Spoon Company

1 The program will display a bar graph showing the
production of each of four plants for a week

1 Each plant has separate records for each
department

 Inputis entered plant by plant

1 Output shows one asterisk for each 1000 units,
and production is rounded to the nearest 1,000
units

Analysis of The Problem

[Use an array named production to hold total
production of each plant

 Production for plant n is stored in production[n-1]

[Program must scale production to nearest
1,000 units to display asterisks in the bar

Production Graph Sub-Tasks

[Analysis leads to the following sub-tasks

 input_data: Read input for each plant
Set production [plant_number -1] to the total
production for plant number n

J scale: For each plant, change production[plant_number]
to the correct number of asterisks

 graph: Output the bar graph

More Analysis Details

[The entire array will be an argument for the
functions we write to perform the subtasks

d We will also include a formal parameter for the
size

 The size of the array is equal to the number of
plants

d We will use a constant for the number of plants

1 The function declarations and main function
for the production graph program are found in

Outline of the Graph Program

//Reads data and displays a bar graph showing productivity for each plant.
#include <iostream>
const int NUMBER_OF_PLANTS = 4;

void input_data(int a[], int Tast_plant_number);

//Precondition: last_plant_number is the declared size of the array a.
//Postcondition: For plant_number = 1 through Tlast_plant_number:
//alplant_number-1] equals the total production for plant number plant_number.

void scale(int a[], int size);

//Precondition: a[0] through a[size-1] each has a nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s (rounded to

//an integer) that were originally in a[i], for all i such that 0 <= 7 <= size-1.

void graph(const int asterisk_count[], 7nt last_plant_number);

//Precondition: asterisk_count[0] through asterisk_count[last_plant_number-1]
//have nonnegative values.

//Postcondition: A bar graph has been displayed saying that plant

//number N has produced asterisk_count[N-1] 1000s of units, for each N such that
//1 <= N <= last_plant_number

int main()
{
using namespace std;
int production[NUMBER_OF_PLANTS];

cout << "This program displays a graph showing\n"
<< "production for each plant in the company.\n";

input_data(production, NUMBER_OF_PLANTS);
scale(production, NUMBER_OF_PLANTS);
graph(production, NUMBER_OF_PLANTS);

return 0;

Algorithm Design: input_data
d We must read all departments’ data for each

plant and add them to produce a plant's total

1 Algorithm for input_data:
for plant_numberis 1, 2, ..., last_plant_number

do the following
 Read all the data for plant number plant_number

J Sum the numbers

 Set production[plant_number - 1] to the total

Coding input_data

1 The algorithm can be translated to C++ as:

void input_data(int a [], int last_plant_number)

{

using namespace std;

for (int plant_number = 1;
plant_number <= last_plant_number;
plant_number++)
{
cout << endl;
<< "Enter production for plant”
<< plant_number << end];
get_total(a[plant_number -1]);

Testing input_data
[Each function should be tested in a program in
which it is the only untested function

1 Because input_data calls get_total, get_total
is tested first

 Once tested, get_total can be used to test
input_data

Test of Function input_data (part 1 of 3)

//Tests the function input_data.
#include <iostream>
const int NUMBER_OF_PLANTS = 4;

void input_data(int a[], int Tast_plant_number);

//Precondition: last_plant_number is the declared size of the array a.
//Postcondition: For plant_number = 1 through last_plant_number:
//alplant_number-1] equals the total production for plant number plant_number.

void get_total(int& sum);
//Reads nonnegative integers from the keyboard and
//places their total in sum.

int main()

{
using namespace std;
int production[NUMBER_OF_PLANTS];
char ans;

do
{
input_data(production, NUMBER_OF_PLANTS);
cout << endl
<< "Total production for each"
<< " of plants 1 through 4:\n";
for (int number = 1; number <= NUMBER_OF_PLANTS; number++)
cout << production[number - 1] << " ";
cout << endl
<< "Test Again?(Type y or n and Return): ";
cin >> ans;
while ((ans !'= 'N’) & (ans != ’'n’));

cout << endl;

return 0;

Test of Function input_data (part 2 of 3)

//Uses iostream:
void input_data(int a[], int Tast_plant_number)

{

using namespace std;
for (int plant_number = 1;
plant_number <= Tast_plant_number; plant_number++)

{
cout << endl
<< "Enter production data for plant number "
<< plant_number << endl;
get_total(a[pTlant_number - 1]);
}

//Uses iostream:
void get_total(int& sum)

{

using namespace std;
cout << "Enter number of units produced by each department.\n"
<< "Append a negative number to the end of the 1list.\n";

sum = 0;

int next;

cin >> next;
while (next >= 0)

{
sum = sum + next;
cin >> next;
}
cout << "Total = " << sum << endl;

Test of Function input_data (part 3 of 3)

Sample Dialogue

Enter production data for plant number
Enter number of units produced by each
Append a negative number to the end of
123-1

Total = 6

Enter production data for plant number
Enter number of units produced by each
Append a negative number to the end of
023-1

Total = 5

Enter production data for plant number

Enter number of units produced by each
Append a negative number to the end of
2 -1

Total = 2

Enter production data for plant number
Enter number of units produced by each
Append a negative number to the end of
-1

Total = 0

1
department.
the Tist.

2
department.
the Tist.

3
department.
the list.

4
department.
the Tlist.

Total production for each of plants 1 through 4:

6520
Test Again?(Type y or n and Return): n

Test Data for input_data

d Remember that input_data should be tested
1 With a plant that contains no production figures

d With a plant having only one production figure
1 With a plant having more than one figure

1 With zero and non-zero production figures

Algorithm for scale

1 Scale changes the value of the indexed
variable to show the whole number of
asterisks to print

1 Scale is called using
scale (production, NUMBER_OF_PLANTS);

and its algorithm is

for (int index = 0; index < size; index++)
Divide the value of a[index]| by 1,000 and

round the result to the nearest integer

Coding scale

1 The code for scale, below, uses a function
named round that must be defined as well

void scale(int a[], int size)

{

for (int index = 0; index < size; index++)
alindex] = round (aJindex] / 1000.0);

1

Why not 10007

Function floor

 Function round, called by scale, uses the floor
function from the cmath library

 The floor function returns the first whole number
less than its argument:
floor (3.4) returns 3
floor (3.9) returns 3

1 Adding 0.5 to the argument for floor is how round
performs its task
floor (3.4 + 0.5) returns 3
floor (3.9 + 0.5) returns 4

Testing scale

J To test scale
1 First test round

1 Scale should be tested with arguments that
 Are 0

 Round up

J Round down

The Function scale (part 1 of 2)

//Demonstration program for the function scale.
#include <iostream>
#include <cmath>

void scale(int a[], int size);

//Precondition: a[0] through a[size-1] each has a nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s (rounded to

//an integer) that were originally in a[i], for all i such that 0 <= i <= size-1.

int round(double number);
//Precondition: number >= 0.
//Returns number rounded to the nearest integer.

int main()
{
using namespace std;
int some_array[4], index;

cout << "Enter 4 numbers to scale: ";
for (index = 0; 1index < 4; index++)
cin >> some_array[index];

scale(some_array, 4);

cout << "Values scaled to the number of 1000s are: ";
for (index = 0; index < 4; index++)

cout << some_array[index] << ;
cout << endl;

return 0;

void scale(int a[], int size)
{
for (int index = 0; index < size; index++)
a[index] = round(a[index]/1000.0);

The Function scale (part 2 of 2)

//Uses cmath:
int round(double number)

{

using namespace std;
return static_cast<int>(floor(number + 0.5));

}

Sample Dialogue

Enter 4 numbers to scale: 2600 999 465 3501
Values scaled to the number of 1000s are: 3 1 0 4

Function graph

[The design of graph is quite straightforward
and not included here

[The complete program to produce the bar
graph is found in

Production Graph Program (part 1 of 3)

//Reads data and displays a bar graph showing productivity for each plant.
#include <iostream>

#include <cmath>

const int NUMBER_OF_PLANTS = 4;

void input_data(int a[], int last_plant_number);

//Precondition: last_plant_number is the declared size of the array a.
//Postcondition: For plant_number = 1 through last_plant_number:
//al[plant_number-1] equals the total production for plant number plant_number.

void scale(int a[], int size);

//Precondition: a[0] through a[size-1] each has a nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s (rounded to

//an integer) that were originally in a[i], for all i such that 0 <= i <= size-1.

void graph(const int asterisk_count[], 7nt Tast_plant_number);

//Precondition: asterisk_count[0] through asterisk_count[last_plant_number-1]
//have nonnegative values.

//Postcondition: A bar graph has been displayed saying that plant

//number N has produced asterisk_count[N-1] 1000s of units, for each N such that
//1 <= N <= last_plant_number

void get_total(int& sum);
//Reads nonnegative integers from the keyboard and
//places their total in sum.

int round(double number);
//Precondition: number >= 0.
//Returns number rounded to the nearest integer.

void print_asterisks(int n);
//Prints n asterisks to the screen.

int main()
{
using namespace std;
int production[NUMBER_OF_PLANTS];

cout << "This program displays a graph showing\n"
<< "production for each plant in the company.\n";

Production Graph Program (part 2 of 3)

input_data(production, NUMBER_OF_PLANTS);
scale(production, NUMBER_OF_PLANTS);
graph(production, NUMBER_OF_PLANTS);
return 0;

}

//Uses iostream:

void input_data(int a[], int last_plant_number)
<The rest of the definition of input_data is given in Display 10.6.>

//Uses iostream:

void get_total(int& sum)
<The rest of the definition of get_total is given in Display 10.6.>

void scale(int a[], int size)
<The rest of the definition of scale is given in Display 10.7.>

//Uses cmath:

int round(double number)
<The rest of the definition of round is given in Display 10.7.>

//Uses iostream:
void graph(const int asterisk_count[], int last_pTlant_number)
{
using namespace std;
cout << "\nUnits produced in thousands of units:\n";
for (int plant_number = 1;
plant_number <= Tast_plant_number; plant_number++)

{
cout << "Plant #" << plant_number << " ";
print_asterisks(asterisk_count[plant_number — 1]);
cout << endl;

}

}

//Uses iostream:
void print_asterisks(int n)
{
using namespace std;
for (int count = 1; count <= n; count++)
cout << "*'";

Production Graph Program (part 3 of 3)

Sample Dialogue

This program displays a graph showing
production for each plant in the company.

Enter production data for plant number 1

Enter number of units produced by each department.
Append a negative number to the end of the Tist.
2000 3000 1000 -1

Total = 6000

Enter production data for plant number 2

Enter number of units produced by each department.
Append a negative number to the end of the Tist.
2050 3002 1300 -1

Total = 6352

Enter production data for plant number 3

Enter number of units produced by each department.
Append a negative number to the end of the Tist.
5000 4020 500 4348 -1

Total = 13868

Enter production data for plant number 4

Enter number of units produced by each department.
Append a negative number to the end of the Tist.
2507 6050 1809 -1

Total = 10366

Units produced in thousands of units:
Plant #1 ¥
Plant #2 %%

P]ant #3 Fedehdehdehdehdehdh®

P]ant #4 FTedededededefhhn

Class Work
 Can you

J Write a function definition for a function called
one_more, which has a formal parameter for an
array of integers and increases the value of each

array element by one. Are other formal parameters
needed?

Programming With Arrays

 The size needed for an array is changeable
1 Often varies from one run of a program to another

1 Is often not known when the program is written

d A common solution to the size problem

 Declare the array size to be the largest that could
be needed

1 Decide how to deal with partially filled arrays

Partially Filled Arrays

J When using arrays that are partially filled

A Functions dealing with the array may not need to
know the declared size of the array, only how many
elements are stored in the array

A parameter, number_used, may be sufficient to
ensure that referenced index values are legal

A A function such as fill_array in Display 10.9 needs
to know the declared size of the array

Partially Filled Array (part 1 of 3)

//Shows the difference between each of a list of golf scores and their average.
#include <iostream>
const int MAX_NUMBER_SCORES = 10;

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//al[0] through a[number_used-1] have been filled with
//nonnegative integers read from the keyboard.

double compute_average(const int a[], int number_used);
//Precondition: a[0] through a[number_used-1] have values; number_used > 0.
//Returns the average of numbers a[0] through a[number_used-1].

void show_difference(const int a[], int number_used);

//Precondition: The first number_used indexed variables of a have values.
//Postcondition: Gives screen output showing how much each of the first
//number_used elements of a differs from their average.

int main()

{
using namespace std;
int score[MAX_NUMBER_SCORES], number_used;
cout << "This program reads golf scores and shows\n"
<< "how much each differs from the average.\n";
cout << "Enter golf scores:\n";
fill_array(score, MAX_NUMBER_SCORES, number_used);
show_difference(score, number_used);
return 0;
}

//Uses iostream:
void fill_array(int a[], int size, int& number_used)
{
using namespace std;
cout << "Enter up to << size << nonnegative whole numbers.\n"
<< "Mark the end of the Tist with a negative number.\n";

Partially Filled Array (part 2 of 3)

int next, index = 0;
cin >> next;
while ((next >= 0) && (index < size))

{
a[index] = next;
index++;
cin >> next;

}

number_used = index;

}

double compute_average(const int a[], int number_used)
{
double total = 0;
for (int index = 0; index < number_used; index++)
total = total + a[index];

{
return (total/number_used);
}
else
{
using namespace std;
cout << "ERROR: number of elements is 0 in compute_average.\n"
<< "compute_average returns 0.\n";
return 0;
}
}
void show_difference(const int a[], int number_used)
{

using namespace std;
double average = compute_average(a, number_used);
cout << "Average of the " << number_used

<< " scores = " << average << endl

<< "The scores are:\n";
for (int index = 0; index < number_used; index++)
cout << a[index] << " differs from average by "

<< (a[index] - average) << endl;

Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter up to 10 nonnegative whole numbers.
Mark the end of the 1ist with a negative number.
69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333

Constants as Arguments

d When function fill_array (Display 10.9) is called

MAX NUMBER SCORES is used as an
argument

d Can't MAX_NUMBER_SCORES be used directly
without making it an argument?

 Using MAX_NUMBER_SCORES as an argument makes
it clear that fill_array requires the array's declared size

] This makes fill_array easier to be used in other programs

Searching Arrays

1 A sequential search is one way to search
an array for a given value

1 Look at each element from first to last to see if the
target value is equal to any of the array elements

1 The index of the target value can be returned to
indicate where the value was found in the array

J A value of -1 can be returned if the value was not
found

The search Function
[The search function of Display 10.10...

1 Uses a while loop to compare array elements to
the target value

1 Sets a variable of type bool to true if the target
value is found, ending the loop

1 Checks the boolean variable when the loop ends
to see if the target value was found

1 Returns the index of the target value if found,
otherwise returns -1

Searching an Array (part 1 of 2)

//Searches a partially filled array of nonnegative integers.
#include <iostream>
const int DECLARED_SIZE = 20;

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//a[0] through a[number_used-1] have been filled with
//nonnegative integers read from the keyboard.

int search(const int a[], int number_used, int target);
//Precondition: number_used is <= the declared size of a.
//Also, a[0] through a[number_used -1] have values.
//Returns the first index such that a[index] == target,
//provided there is such an index; otherwise, returns -1.

int main()
{

using namespace std;
int arr[DECLARED_SIZE], 1list_size, target;

fill_array(arr, DECLARED_SIZE, list_size);

char ans;
int result;
do

{

cout << "Enter a number to search for: ";
cin >> target;

result = search(arr, list_size, target);
if (result == -1)
cout << target <<
else
cout << target << is stored in array position
<< result << endl
<< "(Remember: The first position is 0.)\n";

is not on the Tist.\n";

cout << "Search again?(y/n followed by Return): ";
cin >> ans;
Iwhile ((ans !'= 'n’) & & (ans != ’N’));

cout << "End of program.\n";
return 0;

Searching an Array (part 2 of 2)

//Uses iostream:

void fill_array(int a[], int size, int& number_used)
<The rest of the definition of fi11_array is given in Display 10.9.>

int search(const int a[], int number_used, int target)

{

int index = 0;
bool found = false;
while ((!found) && (index < number_used))
if (target == a[index])
found = true;
else
index++;

if (found)

return index;
else

return -1;

}

Sample Dialogue

Enter up to 20 nonnegative whole numbers.
Mark the end of the Tist with a negative number.
10 20 30 40 50 60 70 80 -1

Enter a number to search for: 10

10 is stored in array position O
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 40

40 is stored in array position 3
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 42

42 is not on the list.

Search again?(y/n followed by Return): n
End of program.

Program E.g.: Sorting an Array

[Sorting a list of values is very common task
1 Create an alphabetical listing
[Create a list of values in ascending order

1 Create a list of values in descending order

J Many sorting algorithms exist

d Some are very efficient

J Some are easier to understand

The Selection Sort Algorithm

d When the sort is complete, the elements of the
array are ordered such that

al0] <a]l] <...<a | number_used -1]

1 This leads to an outline of an algorithm:

for (int index = 0; index < number_used; index++)
place the indexth smallest element in a[index]

Sort Algorithm Development

[One array is sufficient to do our sorting
1 Search for the smallest value in the array

 Place this value in a[0], and place the value that wa:
in a[0] in the location where the smallest was founc

 Starting at a[1], find the smallest remaining value
swap it with the value currently in a[1]

1 Starting at a[2], continue the process until the array
is sorted

Selection Sort

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 14 12 20

/ \

8 6 10 2 16 4 18 14 12 20

\ /

2 6 10 8 16 4 18 14 12 20
/ \

2 | 6 |10] 8 | 16 | 4 | 18 | 14 | 12 | 20
N .4

2 4 10 8 16 6 18 14 12 20

Sorting an Array (part 1 of 3)

//Tests the procedure sort.
#include <iostream>

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//al[0] through a[number_used — 1] have been filled with
//nonnegative integers read from the keyboard.

void sort(int a[], int number_used);

//Precondition: number_used <= declared size of the array a.

//The array elements a[0] through a[number_used — 1] have values.
//Postcondition: The values of a[0] through a[number_used — 1] have
//been rearranged so that a[0] <= a[l] <= ... <= a[number_used - 1].

void swap_values(int& vl, int& v2);
//Interchanges the values of vl and v2.

int index_of_smallest(const int a[], int start_index, int number_used);
//Precondition: 0 <= start_index < number_used. Referenced array elements have
//values.

//Returns the index i such that a[i] is the smallest of the values
//al[start_index], a[start_index + 1], ..., al[number_used — 1].

int main()

{
using namespace std;
cout << "This program sorts numbers from lowest to highest.\n";
int sample_array[10], number_used;
fill_array(sample_array, 10, number_used);
sort(sample_array, number_used);
cout << "In sorted order the numbers are:\n";
for (int index = 0; index < number_used; index++)

cout << sample_array[index] << " ";

cout << endl;
return 0;

}

//Uses iostream:
void fill_array(int a[], int size, int& number_used)

<The rest of the definition of fi11_array is given in Display 10.9.>

Sorting an Array (part 2 of 3)

void sort(int a[], int number_used)

{

int index_of_next_smallest;
for (int index = 0; index < number_used — 1; index++)
{//Place the correct value in a[index]:
index_of_next_smallest =
index_of_smallest(a, index, number_used);
swap_values(a[index], a[index_of_next_smallest]);
//a[0] <= a[l] <=...<= a[index] are the smallest of the original array
//elements. The rest of the elements are in the remaining positions.

void swap_values(int& v1l, int& v2)

{

int

int temp;
temp = v1;
vl = v2;

v2 = temp;

index_of_smallest(const int a[], int start_index, int number_used)

int min = a[start_index],
index_of_min = start_index;

for (int index = start_index + 1; index < number_used; index++)
if (a[index] < min)

{

min = a[index];

index_of_min = index;

//min is the smallest of a[start_index] through a[index]
}

return index_of_min;

Sorting an Array (part 3 of 3)
Sample Dialogue

This program sorts numbers from lowest to highest.
Enter up to 10 nonnegative whole numbers.

Mark the end of the 1list with a negative number.
80 30 50 70 60 90 20 30 40 -1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

Class Work
 Can you

d Write a program that will read up to 10 letters into
an array and write the letters back to the screen in

the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the end of
input

Arrays and Classes

[Arrays can use structures or classes as their
base types

d Example:

struct WindInfo
{

double velocity;
char direction;

}

WindInfo data_point[10];

Accessing Members

1 When an array's base type is a structure or a
class...
[Use the dot operator to access the members of an
indexed variable
d Example:
for(i=0;i<10;i++)

{

cout << "Enter velocity: ";
cin >> data_point[i].velocity;

}...

An Array of Money

1 The Money class of Chapter 8 can be the base
type for an array

d When an array of classes is declared

(] The default constructor is called to initialize the
indexed variables

1 An array of class Money is demonstrated in

Display 10.14 (1)
Display 10.14 (2)

Header File for the Class Money (part 1 of 2)

//This is the header file money.h. This is the interface for the class Money.
//Values of this type are amounts of money in U.S. currency.

#ifndef MONEY_H

#define MONEY_H

#include <iostream>

using namespace std;

namespace moneysavitch

{

class Money

{

public:
friend Money operator +(const Money& amountl, const Money& amount2);
//Returns the sum of the values of amountl and amount2.

friend Money operator —(const Money& amountl, const Money& amount2);
//Returns amount 1 minus amountZ2.

friend Money operator —(const Money& amount);
//Returns the negative of the value of amount.

friend bool operator ==(const Money& amountl, const Money& amount2);
//Returns true if amountl and amount2 have the same value; false otherwise.

friend bool operator < (const Money& amountl, const Money& amount2);
//Returns true if amountl is less than amount2; false otherwise.

Money(Tong dollars, int cents);

//Initializes the object so its value represents an amount with
//the dollars and cents given by the arguments. If the amount
//1is negative, then both dollars and cents should be negative.

Money(Tong dollars);
//Initializes the object so its value represents $dollars.00.

Money();
//Initializes the object so its value represents $0.00.

double get_value() const;
//Returns the amount of money recorded in the data portion of the calling
//object.

friend istream& operator >>(istream& ins, Money& amount);

//Overloads the >> operator so it can be used to input values of type
//Money. Notation for inputting negative amounts is as in -$100.00.
//Precondition: If ins is a file input stream, then ins has already been
//connected to a file.

Header File for the Class Money (part 2 of 2)

friend ostream& operator <<(ostream& outs, const Money& amount);

//Overloads the << operator so it can be used to output values of type

//Money. Precedes each output value of type Money with a dollar sign.
//Precondition: If outs is a file output stream, then outs has already been

//connected to a file.
private:
long all_cents;
};
}//namespace moneysavitch
#endif //MONEY_H

Program Using an Array of Objects (part 1 of 2)

//Reads in 5 amounts of money and shows how much each
//amount differs from the largest amount.

#include <iostream>

#include "money.h"

int main()
{
using namespace std;
using namespace moneysavitch;
Money amount[5], max;
int 1i;

cout << "Enter 5 amounts of money:\n";
cin >> amount[0];

max = amount[0];

for (i =1; i <5; i++)

{
cin >> amount[i];
if (max < amount[i])
max = amount[i];
//max is the largest of amount[O0],..., amount[i].
}

Money difference[5];
for (i =0; i < 5; i++)
difference[i] = max — amount[i];

cout << "The highest amount is " << max << endl;
cout << "The amounts and their\n"

<< "differences from the largest are:\n";
for (i =0; i < 5; i++)

{
cout << amount[i] << " off by "
<< difference[i] << endl;
}
return 0;

Program Using an Array of Objects (part 2 of 2)

Sample Dialogue

Enter 5 amounts of money:

$5.00 $10.00 $19.99 $20.00 $12.79
The highest amount is $20.00

The amounts and their

differences from the largest are:
$5.00 off by $15.00

$10.00 off by $10.00

$19.99 off by $0.01

$20.00 off by $0.00

$12.79 off by $7.21

Arrays as Structure Members

] A structure can contain an array as a member
d Example:
struct Data

{
double time[10];

int distance;

}

Data my_best;
1 my_best contains an array of type double

Accessing Array Elements

 To access the array elements within a
structure

1 Use the dot operator to identify the array within

the
structure

1 Use the []|'s to identify the indexed variable
desired

Example: my_best.time]|i]
references the ith indexed variable of the variable
time in the structure my_best

Arrays as Class Members

 Class TemperatureList includes an array
 The array, named list, contains temperatures
(d Member variable size is the number of items stored

class TemperaturelList
{
public:
TemperatureList();
//Member functions
private:
double list [MAX_LIST_SIZE];
int size;

Overview of TemperatureList

 To create an object of type TemperatureList:
1 TemperatureList my_data;

 To add a temperature to the list:
J My_data.add_temperature(77);

1 A check is made to see if the array is full

<< is overloaded so output of the list is

d cout << my_data;

Interface for a Class with an Array Member

//This is the header file templist.h. This is the interface for the class
//TemperaturelList. Values of this type are lists of Fahrenheit temperatures.

#ifndef TEMPLIST_H
#define TEMPLIST_H
#include <iostream>
using namespace std;
namespace tlistsavitch

{
const int MAX_LIST_SIZE = 50;

class TemperaturelList

{

public:
TemperatureList();
//Initializes the object to an empty Tist.
void add_temperature(double temperature);
//Precondition: The 1ist is not full.
//Postcondition: The temperature has been added to the Tist.
bool full() const;
//Returns true if the 1ist is full; false otherwise.
friend ostream& operator <<(ostream& outs,

const TemperaturelList& the_object);

//Overloads the << operator so it can be used to output values of
//type TemperaturelList. Temperatures are output one per Tline.
//Precondition: If outs is a file output stream, then outs
//has already been connected to a file.

private:
double 1ist[MAX_LIST_SIZE]; //of temperatures in Fahrenheit
int size; //number of array positions filled

b

}//namespace tlistsavitch
#endif //TEMPLIST_H

Implementation for a Class with an Array Member

//This is the implementation file: templist.cpp for the class Temperaturelist.
//The interface for the class TemperaturelList is in the file templist.h.
#include <iostream>

#include <cstdlib>

#include "templist.h"

using namespace std;

namespace tlistsavitch

{
TemperatureList::TemperatureList() : size(0)
{
//Body intentionally empty.
}

void TemperaturelList::add_temperature(double temperature)
{//Uses iostream and cstdlib:
if (full())

{
cout << "Error: adding to a full Tlist.\n";
exit(l);
}
else
{
Tist[size] = temperature;
size = size + 1;
}
}
bool TemperatureList::full() const
{
return (size == MAX_LIST_SIZE);
}

//Uses iostream:
ostream& operator <<(ostream& outs, const TemperaturelList& the_object)

{
for (int i = 0; i < the_object.size; i++)
outs << the_object.Tist[i] << " F\n";
return outs;
}

}//namespace tlistsavitch

Class Work
 Can you

1 Declare an array as a member of a class?
1 Declare an array of objects of a class?

J Write code to call a member function of an
element
in an array of objects of a class?

(] Write code to access an element of an array of
integers that is a member of a class?

Multi-Dimensional Arrays

1 C++ allows arrays with multiple index values

A char page [30] [100];
declares an array of characters named page

] page has two index values:
The first ranges from 0 to 29
The second ranges from 0 to 99

1 Each index in enclosed in its own brackets

1 Page can be visualized as an array of
30 rows and 100 columns

Index Values of page

1 The inc
page[0

exed variab.
[0], page[0]

page[1.

[0], page[1]

es for array page are
1], ..., page|0][99]

1], ..., page[1]]99]

i;.age[29] 0], page[29]]1], ..., page|29]]|99]

 page is actually an array of size 30
[page's base type is an array of 100 characters

Multi-D Array Parameters

1 Recall that the size of an array is not needed
when declaring a formal parameter:
void display_line(const char a| |, int size);

 The base type of a multi-dimensional array
must be completely specified in the parameter
declaration

void display_page(const char page| | [100],
int size_dimension_1);

Program E.g.: Grading Program

1 Grade records for a class can be stored in a
two-dimensional array

 For a class with 4 students and 3 quizzes the array
could be declared as

int grade[4][3];
) The first array index refers to the number of a student

1 The second array index refers to a quiz number

 Since student and quiz numbers start with one,
we subtract one to obtain the correct index

Grading Program: average scores

[The grading program uses one-dimensional
arrays to store...

1 Each student's average score

 Each quiz's average score

 The functions that calculate these averages
use global constants for the size of the arrays
1 This was done because the

functions seem to be
particular to this program

Two-Dimensional Array (part 1 of 3)

//Reads quiz scores for each student into the two-dimensional array grade (but the input
//code is not shown in this display). Computes the average score for each student and
//the average score for each quiz. Displays the quiz scores and the averages.

#include <iostream>

#include <iomanip>

const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_avel[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each st_ave[st_num-1] contains the average for student number stu_num.

void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each quiz_ave[quiz_num-1] contains the average for quiz number
//quiz_num.

void display(const int grade[][NUMBER_QUIZZEST,

const double st_ave[], const double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER _QUIZZES are the
//dimensions of the array grade. Each of the indexed variables grade[st_num-1,
//quiz_num-1] contains the score for student st_num on quiz quiz_num. Each
//st_ave[st_num-1] contains the average for student stu_num. Each quiz_ave[quiz_num-1]
//contains the average for quiz number quiz_num.
//Postcondition: A1l the data in grade, st_ave, and quiz_ave has been output.

int main()
{
using namespace std;
int grade[NUMBER_STUDENTS] [NUMBER_QUIZZES];
double st_ave[NUMBER_STUDENTS];
double quiz_ave[NUMBER_QUIZZES];

<The code for filling the array grade goes here, but is not shown.>

Two-Dimensional Array (part 2 of 3)

compute_st_ave(grade, st_ave);
compute_quiz_ave(grade, quiz_ave);
display(grade, st_ave, quiz_ave);
return 0;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_avel])

{

for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)

{//Process one st_num:
double sum = 0;
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)

sum = sum + grade[st_num-1][quiz_num-1];

//sum contains the sum of the quiz scores for student number st_num.
st_ave[st_num-1] = sum/NUMBER_QUIZZES;
//Average for student st_num is the value of st_ave[st_num-1]

}

void compute_quiz_ave(const int grade[] [NUMBER_QUIZZES], double quiz_ave[])
{
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
{//Process one quiz (for all students):
double sum = 0;
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
sum = sum + grade[st_num-1][quiz_num-1];
//sum contains the sum of all student scores on quiz number quiz_num.
quiz_ave[quiz_num-1] = sum/NUMBER_STUDENTS;
//Average for quiz quiz_num 1s the value of quiz_ave[quiz_num-1]

Two-Dimensional Array (part 3 of 3)

//Uses iostream and iomanip:
void display(const int grade[][NUMBER_QUIZZES],

{

}

const double st_ave[], const double quiz_ave[])

using namespace std;
cout.setf(ios::fixed);
cout.setf(ios: :showpoint);
cout.precision(l);

cout << setw(10) << "Student"
<< setw(5) << "Ave"
<< setw(15) << "Quizzes\n";
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
{//Display for one st_num:
cout << setw(10) << st_num
<< setw(5) << st_ave[st_num-1] << " ";
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << grade[st_num-1][quiz_num-1];
cout << endl;

}

cout << "Quiz averages = ";

for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << quiz_avel[quiz_num-1];

cout << endl;

Sample Dialogue

<The dialogue for filling the array grade is not shown.>

Student Ave Quizzes
1 10.0 10 10 10
2 1.0 2 0 1
3 7.7 8 6 9
4 7.3 8 4 10
Quiz averages = 7.0 5.0 7.5

The Two-Dimensional Array grade

N N ¢

T i i
student 1 —1 grade[0][0] | grade[0][1] | grade[0][2] ——p»
student 2 1 grade[1][0] | grade[1][1] | grade[1][2] ——p»
student 3 _| grade[2][0] | garde[2][1] | grade[2][2] | g
student 4 _| grade[3][0] | grade[3][1] | grade[3][2] | g

l

l

l

grade[3][0] is the
grade that student 4
received on quiz 1.

grade[3][1] /s the
grade that student 4
received on quiz 2.

grade[3][2] is the
grade that student 4
received on quiz 3.

The Two-Dimensional Array grade (Another View)

R
student 1 _| 10 10 10 [—p| 10.0 | st_ave[0]
student 2 B 0 1 | | 1.0 | st_ave[l]
student 3 | 8 6 9 | _p| 7.7 | st_ave[2]
student 4 | 8 4 10 | | 7.3 | st_ave[3]
quiz_ave 7.0 | 5.0 | 7.5

quiz_ave[0]
quiz_ave[1l]
quiz_ave[2]

Section 10.5 Conclusion
 Can you

1 Write code that will fill the array a(declared below)

with numbers typed at the keyboard? The number:
will be input fiver per line, on four lines.

int a|4][5];

1 Write a function to get input into a 2-D array.

