The
Complete
Reference

Schildt’s classic
Java reference,
updated and
expanded for
Java SE 6

Java

Seventh Edition

Comprehensive guide to the entire
Java language

Includes coverage of applets, servlets, Swing,
JavaBeans, the AWT, and collections

Hundreds of examples and sample applications

Herbert Schildt

[op-selling programming
author with more than
3.5 million books sold
worldwide

ﬁ! Osbhorne

Java™
The Complete Reference,
Seventh Edition

About the Author

Herbert Schildt is a leading authority on the
Java, C, C++, and C# languages, and is a master
Windows programmer. His programming books
have sold more than 3.5 million copies worldwide
and have been translated into all major foreign
languages. He is the author of the best-selling
The Art of Java, Java: A Beginner’s Guide, and
Swing: A Beginner’s Guide. Among his other
bestsellers are C++: The Complete Reference, C++:
A Beginner’s Guide, C#: The Complete Reference, and
C#: A Beginner’s Guide. Schildt holds both graduate
and undergraduate degrees from the University
of Illinois. He can be reached at his consulting
office at (217) 586-4683. His Web site is
www.HerbSchildt.com.

www.HerbSchildt.com

Java™
The Gomplete Reference,
Seventh Edition

Herbert Schildt

%
all

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2007 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-163177-8
MHID: 0-07-163177-1

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-226385-5,
MHID: 0-07-226385-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUTNOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Contents at a Glance

Part | The Java Language

1 The History and EvolutionofJava 3
2 AnOverviewofJava ...ttt 15
3 Data Types, Variables, and Arrays 33
4 Operators 57
5 ControlStatements i 77
6 Introducing Classes i, 105
7 ACloser Look at Methods and Classes 125
8 Inheritance 157
9 Packagesand Interfaces oL 183
10 ExceptionHandling L 205
11 Multithreaded Programming 223
12 Enumerations, Autoboxing, and Annotations (Metadata) 255
13 1/0, Applets, and Other Topics oot 285
14 GeneriCsttt 315

Part Il The Java Library

15 String Handling i 359
16 Exploringjavalang i il 385
17 java.util Part 1: The Collections Framework 437
18 java.util Part 2: More Utility Classes 503
19 Input/Output: Exploringjava.io 555
20 Networking 599
21 The AppletClass i 617
22 BventHandlingl 637
23 Introducing the AWT: Working with Windows, Graphics, and Text .. 663
24 Using AWT Controls, Layout Managers, and Menus 701
25 IMAZeS ... 755
26 The Concurrency Utilities o ... 787
27 NIO, Regular Expressions, and Other Packages 813

Vi Java: The Complete Reference

Part Il

28
29
30
31

Part IV

32
33
A

Software Development Using Java

JavaBeans
Introducing Swing
Exploring Swing
Servlets

Applying Java

Financial Appletsand Servlets
Creating a Download ManagerinJava
Using Java’s Documentation Comments

847
859
879
907

931
965
991

997

Part |

Contents

Preface XXIX

The Java Language

The History and Evolutionof Java 3
Java’sLineage 3
The Birth of Modern Programming: C 4
C++:TheNextStep 5
The StageIsSetforJava 6
The Creationof Javao i 6
The C# Connection 8
How Java Changed theInternet 8
JavaApplets 8
Security ... 9
Portability 9
Java’s Magic: The Bytecode 9
Servlets: Java on the Server Side 10
TheJava Buzzwords it 10
Simple ... 11
Object-Oriented 11
Robust 11
Multithreaded 12
Architecture-Neutral 12
Interpreted and High Performance 12
Distributed 12
Dynamic ...l 13
The Evolutionof Java 13
JavaSE 6 ... 14
A Culture of Innovationo il 14
AnOverview of Javacviuiitininnineineereeeneeneennnns 15
Object-Oriented Programming 15
Two Paradigms L 15
Abstraction i 16
The Three OOP Principles 16
A First Simple Program i i, 21
Entering the Program 21
Compiling the Program 22
A Closer Look at the First Sample Program 22

vii

viii

Java: The Complete Reference

A Second Short Program
Two Control Statements
The if Statement
TheforLoop
Using Blocks of Code
Lexical Issuesc.u....
Whitespace
Identifiers
Literals
Comments
Separators
The Java Keywords
The Java Class Libraries

3 Data Types, Variables, and Arrays
Java Is a Strongly Typed Language
The Primitive Types
Integers i

longl
Floating-Point Types
floatl
double
Charactersooiiuan.
Booleans il
A Closer Look at Literals
Integer Literals
Floating-Point Literals
Boolean Literals
Character Literals
String Literals
Variables
Declaring a Variable
Dynamic Initialization
The Scope and Lifetime of Variables
Type Conversion and Casting
Java’s Automatic Conversions
Casting Incompatible Types
Automatic Type Promotion in Expressions
The Type Promotion Rules
Arrays ...
One-Dimensional Arrays
Multidimensional Arrays
Alternative Array Declaration Syntax

24
26
26
27
29
30
30
30
31
31
31
31
32

33
33
33
34
35
35
35
35
36
36
36
37
38
39
39
40
40
40
40
41
41
42
42
45
45
45
47
47
48
48
51
55

Contents

A Few Words About Strings oo 55
A Note to C/C++ Programmers About Pointers 56
Operatorsoouiiiiiiii ittt i i i it et 57
Arithmetic Operators 57
The Basic Arithmetic Operators 58

The Modulus Operator 59
Arithmetic Compound Assignment Operators 59
Increment and Decrement 60

The Bitwise Operatorsc..uuiiiiiiiiieeeo... 62
The Bitwise Logical Operators 63

The Left Shift 65

The Right Shift, 66

The Unsigned Right Shift 68
Bitwise Operator Compound Assignments 69
Relational Operators, 70
Boolean Logical Operators 71
Short-Circuit Logical Operators 72

The Assignment Operator 73
The ? Operator 73
Operator Precedence 74
Using Parentheses 74
Control Statementscciiiiiiiiiiiiiiiiiiiiii 77
Java’s Selection Statements i 77
£ P 77
switch ... 80
Iteration Statements i 84
while 84
do-while 86

fOr 88

The For-Each Version of the for Loop 92
Nested Loops i 97

Jump Statements 98
Usingbreak il 98
Usingcontinue 102
return ... 103
Introducing Classesc.coviiiiiiiiiiiineeiiinnnneeennns 105
Class Fundamentals 105
The General FormofaClass 105
ASimpleClass i 106
Declaring Objects i 109
ACloser Lookatnew, 109
Assigning Object Reference Variables 111
Introducing Methodsl 111
Adding a Method to the BoxClass 112

ix

X

Java: The Complete Reference

Returninga Value
Adding a Method That Takes Parameters

Constructors ...

Parameterized Constructors,

The this Keyword

Instance Variable Hiding
Garbage Collection,
The finalize() Method i,

A Stack Class ...

7 A Closer Look at Methods and Classes
Overloading Methods
Overloading Constructors

Using Objects as Parameters

A Closer Look at Argument Passing

Returning Objects
Recursion

Introducing Access Control
Understanding static

Introducing final
Arrays Revisited

Introducing Nested and Inner Classes
Exploring the String Class,
Using Command-Line Arguments
Varargs: Variable-Length Arguments
Overloading Vararg Methods
Varargs and Ambiguityo

8 Inheritance
Inheritance Basics

Member Access and Inheritance
A More Practical Example
A Superclass Variable Can Reference a Subclass Object

Using super

Using super to Call Superclass Constructors
ASecond Use forsuper
Creating a Multilevel Hierarchy
When Constructors Are Called
Method Overriding
Dynamic Method Dispatch
Why Overridden Methods?
Applying Method Overriding
Using Abstract Classes
Using final with Inheritance

Using final
Using final
The Object Class

to Prevent Overriding
to Prevent Inheritance

114
115
117
119
120
121
121
121
122

125
125
128
130
132
134
135
138
141
143
143
145
148
150
151
154
155

157
157
159
160
162
163
163
166
167
170
171
174
175
176
177
180
180
181
181

Contents

9 Packages and Interfaces il 183
Packages 183
Defininga Package 184
Finding Packages and CLASSPATH 184

A Short Package Example 185
Access Protection i 186
An Access Example ool 187
Importing Packages 190
Interfaces 192
Defining an Interface L 193
Implementing Interfaces 194
Nested Interfaces 196
Applying Interfaces oo ool 197
Variables in Interfaces 200
Interfaces Can Be Extended 202

10 Exception Handlingccciiiiiiiiiiiiiiiiiiiane, 205
Exception-Handling Fundamentals 205
Exception Types ... 206
Uncaught Exceptions 206
Usingtryandcatch L 207
Displaying a Description of an Exception 209
Multiple catch Clauseso, 209
Nested try Statements L. 211
throw ..o 213
throws ... 214
finally ... 216
Java’s Built-in Exceptions 217
Creating Your Own Exception Subclasses 219
Chained Exceptionsc.cuiiiiiiiiio... 221
Using Exceptions i 222
11 Multithreaded Programmingccoiiiiiiiiiinnan, 223
The Java Thread Model 224
Thread Priorities 224
Synchronization oo i 225
Messaging i 225

The Thread Class and the Runnable Interface 226

The Main Thread 226
CreatingaThread 228
Implementing Runnable 228
Extending Thread, 230
Choosing an Approach 232
Creating Multiple Threads 232
Using isAlive() andjoin()ccciiiiiiiiiiii... 233
Thread Priorities i 236

Xi

Xii Java: The Complete Reference

12

Synchronization o i

Using Synchronized Methods
The synchronized Statement

Interthread Communicationo,

Deadlock ...

Suspending, Resuming, and Stopping Threads

Suspending, Resuming, and Stopping Threads

Using Javal.l and Earlier
The Modern Way of Suspending, Resuming,

and Stopping Threads

Using Multithreading oL,

Enumerations, Autoboxing, and Annotations (Metadata)
Enumerations

Enumeration Fundamentals
The values() and valueOf() Methods
Java Enumerations Are Class Types
Enumerations Inherit Enum
Another Enumeration Example

Type Wrappers i
AUtobOXING

Autoboxingand Methods
Autoboxing/Unboxing Occurs in Expressions
Autoboxing/Unboxing Boolean and Character Values
Autoboxing/Unboxing Helps Prevent Errors
AWordof Warning

Annotations (Metadata)ciiiiiiiii

Annotation Basics
Specifying a Retention Policy
Obtaining Annotations at Run Time by Use of Reflection ...
The AnnotatedElement Interface
Using Default Values
Marker Annotations
Single-Member Annotations
The Built-In Annotationscciiiirin.n..
Some Restrictions ...

13 T/O, Applets, and Other TOpicSccovvviieiiiennnnneeennn

T/O BaSICS o« oottt e et e

Streams
Byte Streams and Character Streams
The Predefined Streams

Reading Console Input

Reading Characters
Reading Stringso oL

238
239
241
242
247
249

249

251
254

255
255
255
258
259
261
263
264
266
267
268
270
271
271
272
272
273
273
278
279
280
281
282
284

285
285
286
286
288
288
289
290

14

Contents

Writing Console Output 292
The PrintWriter Classcuuiiiiii... 292
Reading and Writing Files 293
Applet Fundamentals L. 296
The transient and volatile Modifiers 299
Using instanceofc.c.oiiiiiiiiiiiiii.. 300
StHACHD .. 302
Native Methods i 302
Problems with Native Methods 306

Using assert 306
Assertion Enabling and Disabling Options 309
StaticImport 309
Invoking Overloaded Constructors Through this() 312
GeNeTiCS .\ttt i s 315
What Are Generics?iiiiiiiiiiii 316
A Simple Generics Example i 316
Generics Work Only with Objects 320
Generic Types Differ Based on Their Type Arguments 320

How Generics Improve Type Safety 320

A Generic Class with Two Type Parameters 322
The General Form of a GenericClass 324
Bounded Types 324
Using Wildcard Arguments, 327
Bounded Wildcards oL 329
Creating a Generic Method 334
Generic Constructors L. 336
GenericInterfaces i 337
Raw Types and Legacy Code, 339
Generic Class Hierarchies, 342
Using a Generic Superclass 342
AGenericSubclass oo 344
Run-Time Type Comparisons Within a Generic Hierarchy ... 345
Casting 348
Overriding Methods in a GenericClass 348
Brasure 349
Bridge Methodsl 351
Ambiguity Errors 353
Some Generic Restrictions, 354
Type Parameters Can’t Be Instantiated 354
Restrictions on Static Members 354
Generic Array Restrictions 355
Generic Exception Restriction 356

Final Thoughts on Generics, 356

xiii

Xiv

Java: The Complete Reference

Part Il The Java Library

15 StringHandling ...,
The String Constructors

String Length

Special String Operations
String Literals
String Concatenation
String Concatenation with Other Data Types
String Conversion and toString()
Character Extraction

charAt(

)

getChars() ...
getBytes()
toCharArray() ...
String Comparison i i
equals() and equalslgnoreCase()
regionMatches() il
startsWith() and endsWith()
equals() Versus== il
compareTo()
Searching Strings i
Modifying a String i
substring()
CONECAL() o vttt
replace() ...

trim()

Data Conversion Using valueOf()
Changing the Case of Characters Withina String
Additional String Methods 0L

StringBuffer .

StringBuffer Constructors
length() and capacity()oo i i
ensureCapacity() i
setLength()

charAt(

Yand setCharAt() ..o,

getChars() ...
append() ...

insert()

TEVETSE() w vttt e e et e e e
delete() and deleteCharAt()c.o i,
replace()
substring()
Additional StringBuffer Methods

StringBuilder

359
362
362
362
362
363
364
365
365
365
366
366
366
366
367
368
368
369
370
372
372
373
373
373
374
375
376
377
377
378
378
378
379
379
380
381
381
382
382
383
383
384

16 Exploring java.lang
Primitive Type Wrappers

Number

Double and Float .

Contents

Byte, Short, Integer,and Long

Character

Recent Additions to Character for Unicode Code

Point Support ..

Boolean

Void
Process
Runtime

Memory Management
Executing Other Programs

ProcessBuilder
System

Using currentTimeMillis() to Time Program Execution

Using arraycopy()

Environment Properties

Object

Using clone() and the Cloneable Interface

Classcoo ..
ClassLoader
Math

Transcendental Functions
Exponential Functions

Rounding Functions
Miscellaneous Math
StrictMath
Compiler
Thread, ThreadGroup, and

Methods

Runnable

The Runnable Interface

Thread
ThreadGroup

ThreadlLocal and InheritableThreadLocal

Package
RuntimePermission
Throwable
SecurityManager
StackTraceElement
Enum

The CharSequence Interface

The Comparable Interface
The Appendable Interface

385
386
386
386
390
398

401
402
403
403
404
405
406
407
409
410
411
412
412
413
415
418
418
418
419
419
420
422
422
422
422
422
424
429
429
431
431
431
431
432
433
433
434

XV

Xvi

Java: The Complete Reference

17

The Iterable Interface

The Readable Interface ..

The java.lang Subpackages
java.lang.annotation
java.lang.instrument

javalang.management L

javalang.ref
java.lang.reflect ...

java.util Part 1: The Collections Framework

Collections Overview ...

Recent Changes to Collectionsooiiiiio...
Generics Fundamentally Change the Collections

Framework

Autoboxing Facilitates the Use of Primitive Types
The For-Each Style for Loop

The Collection Interfaces .

The Collection Interface

The List Interface .
The Set Interface ..

The SortedSet Interface
The NavigableSet Interface

The Queue Interface
The Deque Interface
The Collection Classes . ..
The ArrayList Class

The LinkedList Classouiiuiinn

The HashSet Class

The LinkedHashSet Classcuiiiiin.n.

The TreeSet Class .

The PriorityQueue Class
The ArrayDeque Class

The EnumSet Class

Accessing a Collection via an Iterator

Using an Iterator ..

The For-Each Alternative to Iterators
Storing User-Defined Classes in Collections
The RandomAccess Interface i,

Working with Maps
The Map Interfaces

The NavigableMap Interface

The Map Classes ..
Comparators
Using a Comparator
The Collection Algorithms

434
434
435
435
435
435
435
436

437
438
439

439
439
440
440
441
441
443
444
444
445
446
448
448
451
453
454
455
456
457
458
458
459
461
462
463
464
464
466
468
472
473
475

18

Contents

ATTAYS .« 480
Why Generic Collections? 484
The Legacy Classes and Interfaces 487
The Enumeration Interface 487
Vector 487

Stack 491
Dictionary i 493
Hashtable 494
Properties 497

Using store()and load() 500
Parting Thoughts on Collections 501
java.util Part 2: More Utility Classes 503
StringTokenizer 503
BitSet 505
Date ... 507
Calendar ... 509
GregorianCalendar 512
TimeZone 513
SimpleTimeZone i 514
Locale ... o 515
Random 516
Observable 518
The Observer Interface 519

An Observer Example 519

Timer and TimerTask i i 522
CUITENCY ..o 524
Formatter 525
The Formatter Constructors 526

The Formatter Methods 526
Formatting Basicsl 526
Formatting Strings and Characters 529
Formatting Numbers 529
Formatting Timeand Date 530

The %n and %% Specifierscoiiiiiiiiiiiin... 532
Specifying a Minimum Field Width 533
Specifying Precision o 534

Using the FormatFlags 535
JustifyingOutputo 535

The Space, +,0,and (Flags 536
TheCommaPFlag 537
The#Flag 537

The Uppercase Option 537

Using an Argument Index 538

The Java printf() Connection 539

Xvii

Xviii

Java: The Complete Reference

19

Scanner
The Scanner Constructors
Scanning Basics o ool
Some Scanner Examples o oL
Setting Delimiters
Other Scanner Features

The ResourceBundle, ListResourceBundle,

and PropertyResourceBundle Classes

Miscellaneous Utility Classes and Interfaces

The java.util Subpackages L.
java.util.concurrent, java.util.concurrent.atomic, and

java.util.concurrentlocks oo ool
javautiljar ... oo
javautilloggingo ool
javautilprefs o
javautilregex ...
javautilspi ... oo
javautilzip ...

Input/Output: Exploring java.dooovviiiiiiiiieeennn.
The Java I/O Classes and Interfaces
File
Directories i
Using FilenameFilter
The listFiles() Alternativecccviiiin....
Creating Directories
The Closeable and Flushable Interfaces
The Stream Classes ...t
The Byte Streams
InputStream ...l
OutputStreamoooL
FileInputStream
FileOutputStream
ByteArraylnputStream oL
ByteArrayOutputStream
Filtered Byte Streams
Buffered Byte Streams
SequencelnputStream ...
PrintStream i
DataOutputStream and DatalnputStream
RandomAccessFile L
The Character Streamsc.ouuiiiiiiieeeo ..
Reader i
Writer
FileReader il
FileWriter

540
540
541
544
547
548

549
553
554

554
554
554
554
554
554
554

555
555
556
559
560
561
561
561
562
562
562
562
564
565
567
568
569
569
573
574
576
578
578
579
579
579
579

20

21

Contents

CharArrayReadero 582
CharArrayWriter i 582
BufferedReader il 583
BufferedWriter il 585
PushbackReader L 585
PrintWriter 586

The Console Class ...ttt 587
Using Stream I[/O 589
Improving we() Using a StreamTokenizer 590
Serialization 592
Serializable 593
Externalizable L. 593
ObjectOutput 593
ObjectOutputStream 593
Objectlnput 595
ObjectInputStream 595

A Serialization Example oL 595
Stream Benefits 598
Networkingcooiiiiiiiiiiiii i ittt 599
Networking Basics o i 599
The Networking Classes and Interfaces 600
InetAddress 601
FactoryMethods L 601
Instance Methods L. 602
Inet4Address and Inet6Address i 603
TCP/IP Client SOcketst 603
URL .o e 605
URLCONNECION . ..ottt e e e e 607
HttpURLConnection i 610
The URIClassooiiiii i 612
CoOoKIES ...t 612
TCP/IP Server SOcketst 612
Datagrams 613
DatagramSocket il 613
DatagramPacket 614
ADatagram Example 615

The Applet Classvviiiiiiiiiiiiiiiiitiiiiinnneeeenns 617
Two Types of Applets 617
Applet Basics 617
The AppletClass 618
Applet Architecture 620
An AppletSkeleton i 621
Applet Initialization and Termination 622
Overridingupdate() 623

Xix

XX

Java: The Complete Reference

22

Simple Applet Display Methods
Requesting Repainting

A Simple Banner Applet
Using the Status Window
The HTML APPLET Tag
Passing Parameters to Applets

Improving the Banner Applet
getDocumentBase() and getCodeBase() .
AppletContext and showDocument() ...
The AudioClip Interface
The AppletStub Interface
Outputting to the Console

Event Handling
Two Event Handling Mechanisms
The Delegation Event Model
Events
Event Sources
Event Listeners
EventClasses
The ActionEventClass
The AdjustmentEvent Class
The ComponentEvent Class
The ContainerEvent Class
The FocusEventClass
The InputEvent Class
The ItemEvent Class
The KeyEventClass
The MouseEventClass
The MouseWheelEvent Class
The TextEventClass
The WindowEventClass
Sourcesof Events
Event Listener Interfaces
The ActionListener Interface
The AdjustmentListener Interface .
The ComponentListener Interface .
The ContainerListener Interface ...
The FocusListener Interface
The ItemListener Interface
The KeyListener Interface
The MouseListener Interface
The MouseMotionListener Interface
The MouseWheelListener Interface
The TextListener Interface
The WindowFocusListener Interface

623
625
626
628
629
630
631
633
634
635
635
636

637
637
638
638
638
639
639
640
641
642
642
643
643
644
645
646
647
648
648
649
650
650
651
651
651
651
651
651
652
652
652
652
652

23

Contents
The WindowListener Interface 653
Using the Delegation Event Model 653
Handling Mouse Events 653
Handling Keyboard Events 656
Adapter Classesuuiiii 659
Inner Classesoiiiiiiiiiiiii 660
Anonymous Inner Classes 662
Introducing the AWT: Working with Windows, Graphics,
and Text ... 663
AWT ClaSS€S ... v 664
Window Fundamentals 666
Component 666
Container il 666
Panel 667
Window ... 667
Frame 667
Canvas 667
Working with Frame Windows 667
Setting the Window’s Dimensions 668
Hiding and Showing a Window 668
Settinga Window’s Title 668
Closing a Frame Window 668
Creating a Frame Window inan Applet 668
Handling Events in a Frame Window 670
Creating a Windowed Program 674
Displaying Information Withina Window 676
Working with Graphicso L. 676
Drawing Lines i, 677
Drawing Rectangles 677
Drawing Ellipses and Circles 678
Drawing Arcs 679
Drawing Polygons 680
Sizing Graphics 681
Working with Color 682
Color Methodso ool 683
Setting the Current Graphics Color 684
A Color Demonstration Applet 684
Setting the Paint Modeo 685
Working with Fonts 686
Determining the Available Fonts 687
Creating and SelectingaFont 689
Obtaining Font Information 690
Managing Text Output Using FontMetrics 691
Displaying Multiple Lines of Text 693

XXi

XXii

Java: The Complete Reference

Centering Text

Multiline Text Alignment

24 Using AWT Controls, Layout Managers, and Menus

25

Control Fundamentals

Adding and Removing Controls

Responding to Controls . .
The HeadlessException ..

Labels
Using Buttons

Handling Buttons

Applying Check Boxes

Handling Check Boxes . ..

CheckboxGroup
Choice Controls

Handling Choice Lists ...

Using Listsoo....

Handling Lists

Managing Scroll Bars

Handling Scroll Bars

Using a TextField

Handling a TextField

Using a TextArea
Understanding Layout Managers

FlowLayout
BorderLayout
Using Insets
GridLayout
CardLayout
GridBagLayout

Menu Bars and Menus
Dialog Boxes
FileDialog

Handling Events by Extending AWT Components

Extending Button
Extending Checkbox

Extending a Check Box Group

Extending Choice
Extending List
Extending Scrollbar

Imagesl

FileFormats

..............................

Image Fundamentals: Creating, Loading, and Displaying

Creating an Image Object

694
695

701
701
702
702
702
702
704
704
707
707
709
711
711
713
714
716
717
719
720
721
723
724
725
727
728
730
732
737
742
747
748
749
750
751
752
752
753

755
755
756
756

26

27

Contents

LoadinganImage 756
DisplayinganImage 757
ImageObserver ... 758
Double Buffering 759
MediaTracker i 762
ImageProduceriii 765
MemorylmageSource il 766
ImageConsumer 767
PixelGrabber 767
ImageFilter 770
CroplmageFilter 770
RGBImageFilter oo i i 772

Cell Animation i 783
Additional Imaging Classes 786
The Concurrency Utilitieso, 787
The Concurrent API Packages 788
javautil.concurrent oo oo 788
java.util.concurrent.atomic L 789
java.util.concurrentlocks o ool 789

Using Synchronization Objects 789
Semaphore 789
CountDownLatch, 795
CyclicBarrier i 796
Exchanger il 799
Usingan Executor i 801
A Simple Executor Example, 802

Using Callable and Future 804

The TimeUnit Enumeration 806
The Concurrent Collections, 808
LOCKS . 808
Atomic Operations 811
The Concurrency Utilities Versus Java’s Traditional Approach 812
NIO, Regular Expressions, and Other Packages 813
The Core Java API Packages 813
NIO o 815
NIO Fundamentals, 815
Charsets and Selectors 818

Using the NIOSystem 819

Is NIO the Future of I/O Handling? 825
Regular Expression Processing 825
Pattern ... 825
Matcher 826
Regular Expression Syntax 827
Demonstrating Pattern Matching 827

XXiii

XXiv

Java: The Complete Reference

Part Il
28

29

Two Pattern-Matching Options
Exploring Regular Expressions

Reflection

Remote Method Invocation (RMI)c.ou...
A Simple Client/Server Application Using RMI

Text Formatting .

DateFormat Classiiiiiiiin..
SimpleDateFormat Class

Software Development Using Java

Java Beans

..

WhatIsaJavaBean? i
Advantages of JavaBeans o il

Introspection ...

Design Patterns for Properties
Design Patterns for Events
Methods and Design Patterns
Using the BeanInfo Interface
Bound and Constrained Properties

Persistence
Customizers ...

TheJava Beans APT
Introspector
PropertyDescriptor
EventSetDescriptor
MethodDescriptor o oL

A Bean Example

Introducing Swingoi i i
The Origins of Swing,
Swing Is Builtonthe AWT
Two Key Swing Features
Swing Components Are Lightweight
Swing Supports a Pluggable Look and Feel
The MVC Connectionc.ouuuiiiiiiiiiiiinneeeeeo..
Components and Containers,
Components

Containers

The Top-Level Container Panes
The Swing Packages
A Simple Swing Application

Event Handling

CreateaSwing Applet i il

Painting in Swing

833
833
833
837
837
840
840
842

847
847
848
848
848
849
850
850
850
851
851
851
853
854
854
854
854

859
859
860
860
860
860
861
862
862
863
863
863
864
868
871
873

30

31

Contents

Painting Fundamentals,
Compute the Paintable Area

A Paint Example .

Exploring Swing
JLabel and Imagelcon ..
JTextField
The Swing Buttons

JButton

JToggleButton ...

Check Boxes

Radio Buttons ...
JTabbedPane
JScrollPane
JList ...
JComboBox
Trees
JTable

.....................................

Continuing Your Exploration of Swing

Servlets
Background
The Life Cycle of a Servlet

.....................................

Using Tomcat for Servlet Development

A Simple Servlet

Create and Compile the Servlet Source Code

Start Tomcat

Start a Web Browser and Request the Servlet

The Servlet API
The javax.servlet Package

The Servlet Interface,
The ServletConfig Interface

The ServletContext
The ServletRequest

Interface
Interface

The ServletResponse Interface

The GenericServlet

Class . .oo i

The ServletInputStream Class
The ServletOutputStream Class
The Servlet Exception Classes
Reading Servlet Parameters
The javax.servlet.http Package
The HttpServletRequest Interface
The HttpServletResponse Interface
The HttpSession Interface
The HttpSessionBindingListener Interface

The Cookie Class

874
875
875

879
879
881
883
883
885
887
889
891
893
895
898
900
904
906

907
907
908
908
910
910
911
911
911
911
912
912
912
913
913
914
915
915
915
915
917
917
917
917
919
919

XXV

XXvi Java: The Complete Reference

The HttpServlet Classo 921
The HttpSessionEvent Class 921
The HttpSessionBindingEvent Class 922
Handling HTTP Requests and Responses 922
Handling HTTP GET Requests 922
Handling HTTP POST Requests 924
Using CoOKIESt 925
Session Trackingoiiiiiiiiiii 927

Part IV Applying Java

32 Financial Appletsand Servletscciiiiiiiiiin, 931
Finding the Payments foraLoan 932
The RegPay Fields 935

The init() Method i 936

The makeGUI() Method 936

The actionPerformed() Method 938

The compute()Method 939
Finding the Future Value of an Investment 940
Finding the Initial Investment Required to Achieve a Future Value ... 943
Finding the Initial Investment Needed for a Desired Annuity 947
Finding the Maximum Annuity for a Given Investment 951
Finding the Remaining BalanceonaLoan 955
Creating Financial Servlets 959
Converting the RegPay Appletintoa Servlet 960

The RegPayS Servlet 960

Some Things to Tryo 963
33 Creating a Download ManagerinjJavaccovvvvvenn. 965
Understanding Internet Downloads 966
An Overview of the Download Manager 966
The Download Class, 967
The Download Variables 971

The Download Constructor 971

The download() Method 971
Therun()Method i 971

The stateChanged() Method 975
Action and Accessor Methods 975

The ProgressRenderer Class 975
The DownloadsTableModel Class 976
The addDownload() Method 978

The clearDownload() Method 979

The getColumnClass() Method 979

The getValueAt() Method 979

The update() Method, 980

Contents

The DownloadManager Class 980
The DownloadManager Variables 986

The DownloadManager Constructor 986

The verifyUrl() Method 986

The tableSelectionChanged() Method 987

The updateButtons() Method 988
Handling Action Events 989
Compiling and Running the Download Manager 989
Enhancing the Download Manager 990
Using Java’s Documentation Comments 991
ThejavadocTags i 991
@author 992
{@code} 992
@deprecated 992
{@dOCROOt} ..o 993
@exception 993
{@inheritDoc} 993
{@INK} ... 993
{@linkplain} 993
{@literal} 993
@param 993
@TetUIN ..ot e 993

@SB oot 994
@serial ... 994
@serialData 994
@serialField 994
@SINCE .« ottt ettt e 994
@UNTOWS .ot 994
{@value} 995
@VETSION . o\ttt et ettt e 995

The General Form of a Documentation Comment 995
WhatjavadocOutputs L 995
An Example that Uses Documentation Comments 995
3T =) G PP 997

Xxvii

This page intentionally left blank

Preface

languages whose influence begins to wane over the years, Java’s has grown stronger

with the passage of time. Java leapt to the forefront of Internet programming with
its first release. Each subsequent version has solidified that position. Today, Java is still the
first and best choice for developing web-based applications.

One reason for Java’s success is its agility. Java has rapidly adapted to changes in the
programming environment and to changes in the way that programmers program. Most
importantly, it has not just followed the trends, it has helped create them. Unlike some other
languages that have a revision cycle of approximately 10 years, Java’s release cycle averages
about 1.5 years! Java’s ability to accommodate the fast rate of change in the computing
world is a crucial part of why it has stayed at the forefront of computer language design.
With the release of Java SE 6, Java’s leadership remains unchallenged. If you are programming
for the Internet, you have chosen the right language. Java has been and continues to be the
preeminent language of the Internet.

As many readers will know, this is the seventh edition of the book, which was first
published in 1996. This edition has been updated for Java SE 6. It has also been expanded in
several key areas. Here are two examples: it now includes twice as much coverage of Swing
and a more detailed discussion of resource bundles. Throughout are many other additions
and improvements. In all, dozens of pages of new material have been incorporated.

ﬁ s I write this, Java is just beginning its second decade. Unlike many other computer

A Book for All Programmers

This book is for all programmers, whether you are a novice or an experienced pro. The
beginner will find its carefully paced discussions and many examples especially helpful.
Its in-depth coverage of Java’s more advanced features and libraries will appeal to the pro.
For both, it offers a lasting resource and handy reference.

What'’s Inside

This book is a comprehensive guide to the Java language, describing its syntax, keywords,
and fundamental programming principles. Significant portions of the Java API library are
also examined. The book is divided into four parts, each focusing on a different aspect of
the Java programming environment.

XXix

XXX

Java: The Complete Reference

Part I presents an in-depth tutorial of the Java language. It begins with the basics,
including such things as data types, control statements, and classes. Part I also discusses
Java’s exception-handling mechanism, multithreading subsystem, packages, and interfaces.
Of course, Java’s newer features, such as generics, annotations, enumerations, and autoboxing
are covered in detail.

Part I examines key aspects of Java’s standard API library. Topics include strings, 1/0O,
networking, the standard utilities, the Collections Framework, applets, GUI-based controls,
imaging, and concurrency.

Part IIT looks at three important Java technologies: Java Beans, Swing, and servlets.

Part IV contains two chapters that show examples of Java in action. The first chapter
develops several applets that perform various popular financial calculations, such as
computing the regular payment on a loan or the minimum investment needed to withdraw
a desired monthly annuity. This chapter also shows how to convert those applets into servlets.
The second chapter develops a download manager that oversees the downloading of files. It
includes the ability to start, stop, and resume a transfer. Both chapters are adapted from my
book The Art of Java, which I co-authored with James Holmes.

Don’t Forget: Code on the Web

Remember, the source code for all of the examples in this book is available free-of-charge on
the Web at www.osborne.com.

Special Thanks

Special thanks to Patrick Naughton. Patrick was one of the creators of the Java language. He also
helped write the first edition of this book. For example, much of the material in Chapters 19, 20,
and 25 was initially provided by Patrick. His insights, expertise, and energy contributed greatly
to the success of this book.

Thanks also go to Joe O’Neil for providing the initial drafts for Chapters 27, 28, 30, and 31.
Joe has helped on several of my books and, as always, his efforts are appreciated.

Finally, many thanks to James Holmes for providing Chapter 32. James is an extraordinary
programmer and author. He was my co-author on The Art of Java and is the author of Struts:
The Complete Reference and a co-author of [SF: The Complete Reference.

HERBERT SCHILDT
November 8, 2006

www.osborne.com

For Further Study

Java: The Complete Reference is your gateway to the Herb Schildt series of programming
books. Here are some others that you will find of interest.

To learn more about Java programming, we recommend the following;:
Java: A Beginner’s Guide
Swing: A Beginner’s Guide
The Art Of Java
To learn about C++, you will find these books especially helpful:
C++: The Complete Reference
C++: A Beginner’s Guide
The Art of C++
C++ From the Ground Up
STL Programming From the Ground Up
To learn about C#, we suggest the following Schildt books:
C#: The Complete Reference
C#: A Beginner’s Guide
To learn about the C language, the following titles will be of interest:
C: The Complete Reference
Teach Yourself C

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

This page intentionally left blank

PART

The Java Language

CHAPTER 1
The History and Evolution

of Java

CHAPTER 2
An Overview of Java

CHAPTER 3
Data Types, Variables,
and Arrays

CHAPTER 4
Operators

CHAPTER 5
Control Statements

CHAPTER 6
Introducing Classes

CHAPTER 7
A Closer Look at Methods
and Classes

CHAPTER 8
Inheritance

CHAPTER 9
Packages and Interfaces

CHAPTER 10
Exception Handling

CHAPTER 11
Multithreaded Programming

CHAPTER 12

Enumerations, Autoboxing,
and Annotations (Metadata)
CHAPTER 13

1/0, Applets, and Other
Topics

CHAPTER 14

Generics

This page intentionally left blank

CHAPTER

The History and
Evolution of Java

forces that shaped it, and the legacy that it inherits. Like the successful computer

languages that came before, Java is a blend of the best elements of its rich heritage
combined with the innovative concepts required by its unique mission. While the remaining
chapters of this book describe the practical aspects of Java—including its syntax, key libraries,
and applications—this chapter explains how and why Java came about, what makes it so
important, and how it has evolved over the years.

Although Java has become inseparably linked with the online environment of the

Internet, it is important to remember that Java is first and foremost a programming language.
Computer language innovation and development occurs for two fundamental reasons:

To fully understand Java, one must understand the reasons behind its creation, the

® To adapt to changing environments and uses

¢ To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in nearly equal
measure.

Java’s Lineage

Java is related to C++, which is a direct descendant of C. Much of the character of Java

is inherited from these two languages. From C, Java derives its syntax. Many of Java’s
object-oriented features were influenced by C++. In fact, several of Java’s defining
characteristics come from—or are responses to—its predecessors. Moreover, the creation of
Java was deeply rooted in the process of refinement and adaptation that has been occurring
in computer programming languages for the past several decades. For these reasons, this
section reviews the sequence of events and forces that led to Java. As you will see, each
innovation in language design was driven by the need to solve a fundamental problem
that the preceding languages could not solve. Java is no exception.

Part I: The Java Language

The Birth of Modern Programming: C

The C language shook the computer world. Its impact should not be underestimated, because
it fundamentally changed the way programming was approached and thought about. The
creation of C was a direct result of the need for a structured, efficient, high-level language that
could replace assembly code when creating systems programs. As you probably know, when
a computer language is designed, trade-offs are often made, such as the following:

e Ease-of-use versus power
® Safety versus efficiency

¢ Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one set of
traits or the other. For example, although FORTRAN could be used to write fairly efficient
programs for scientific applications, it was not very good for system code. And while BASIC
was easy to learn, it wasn’t very powerful, and its lack of structure made its usefulness
questionable for large programs. Assembly language can be used to produce highly efficient
programs, but it is not easy to learn or use effectively. Further, debugging assembly code
can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,
COBOL, and FORTRAN were not designed around structured principles. Instead, they
relied upon the GOTO as a primary means of program control. As a result, programs
written using these languages tended to produce “spaghetti code”—a mass of tangled
jumps and conditional branches that make a program virtually impossible to understand.
While languages like Pascal are structured, they were not designed for efficiency, and failed
to include certain features necessary to make them applicable to a wide range of programs.
(Specifically, given the standard dialects of Pascal available at the time, it was not practical
to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting
attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By
the early 1970s, the computer revolution was beginning to take hold, and the demand for
software was rapidly outpacing programmers’ ability to produce it. A great deal of effort
was being expended in academic circles in an attempt to create a better computer language.
But, and perhaps most importantly, a secondary force was beginning to be felt. Computer
hardware was finally becoming common enough that a critical mass was being reached.
No longer were computers kept behind locked doors. For the first time, programmers
were gaining virtually unlimited access to their machines. This allowed the freedom to
experiment. It also allowed programmers to begin to create their own tools. On the eve
of C’s creation, the stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX
operating system, C was the result of a development process that started with an older
language called BCPL, developed by Martin Richards. BCPL influenced a language called
B, invented by Ken Thompson, which led to the development of C in the 1970s. For many
years, the de facto standard for C was the one supplied with the UNIX operating system
and described in The C Programming Language by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, 1978). C was formally standardized in December 1989, when the American
National Standards Institute (ANSI) standard for C was adopted.

Chapter 1: The History and Evolution of Java

The creation of C is considered by many to have marked the beginning of the modern
age of computer languages. It successfully synthesized the conflicting attributes that had
so troubled earlier languages. The result was a powerful, efficient, structured language that
was relatively easy to learn. It also included one other, nearly intangible aspect: it was a
programmer’s language. Prior to the invention of C, computer languages were generally
designed either as academic exercises or by bureaucratic committees. C is different. It was
designed, implemented, and developed by real, working programmers, reflecting the way
that they approached the job of programming. Its features were honed, tested, thought
about, and rethought by the people who actually used the language. The result was a
language that programmers liked to use. Indeed, C quickly attracted many followers
who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the
programmer community. In short, C is a language designed by and for programmers.

As you will see, Java inherited this legacy.

C++: The Next Step

During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language, you
might ask why a need for something else existed. The answer is complexity. Throughout the
history of programming, the increasing complexity of programs has driven the need for better
ways to manage that complexity. C++ is a response to that need. To better understand why
managing program complexity is fundamental to the creation of C++, consider the following.

Approaches to programming have changed dramatically since the invention of the
computer. For example, when computers were first invented, programming was done by
manually toggling in the binary machine instructions by use of the front panel. As long as
programs were just a few hundred instructions long, this approach worked. As programs grew,
assembly language was invented so that a programmer could deal with larger, increasingly
complex programs by using symbolic representations of the machine instructions. As programs
continued to grow, high-level languages were introduced that gave the programmer more tools
with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an
impressive first step, it is hardly a language that encourages clear and easy-to-understand
programs. The 1960s gave birth to structured programming. This is the method of programming
championed by languages such as C. The use of structured languages enabled programmers
to write, for the first time, moderately complex programs fairly easily. However, even with
structured programming methods, once a project reaches a certain size, its complexity exceeds
what a programmer can manage. By the early 1980s, many projects were pushing the structured
approach past its limits. To solve this problem, a new way to program was invented, called
object-oriented programming (OOP). Object-oriented programming is discussed in detail later in
this book, but here is a brief definition: OOP is a programming methodology that helps organize
complex programs through the use of inheritance, encapsulation, and polymorphism.

In the final analysis, although C is one of the world’s great programming languages,
there is a limit to its ability to handle complexity. Once the size of a program exceeds a
certain point, it becomes so complex that it is difficult to grasp as a totality. While the
precise size at which this occurs differs, depending upon both the nature of the program
and the programmer, there is always a threshold at which a program becomes
unmanageable. C++ added features that enabled this threshold to be broken, allowing
programmers to comprehend and manage larger programs.

6 Partl: The Java Language

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories
in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.”
However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented
features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes,
and benefits. This is a crucial reason for the success of C++ as a language. The invention of C++
was not an attempt to create a completely new programming language. Instead, it was an
enhancement to an already highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming using C++ took
hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect
language. Because C++ blended the high efficiency and stylistic elements of C with the
object-oriented paradigm, it was a language that could be used to create a wide range of
programs. However, just as in the past, forces were brewing that would, once again, drive
computer language evolution forward. Within a few years, the World Wide Web and the
Internet would reach critical mass. This event would precipitate another revolution in
programming.

The Creation of Java

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working
version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between
the initial implementation of Oak in the fall of 1992 and the public announcement of Java in
the spring of 1995, many more people contributed to the design and evolution of the language.
Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were key
contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the
primary motivation was the need for a platform-independent (that is, architecture-neutral)
language that could be used to create software to be embedded in various consumer electronic
devices, such as microwave ovens and remote controls. As you can probably guess, many
different types of CPUs are used as controllers. The trouble with C and C++ (and most other
languages) is that they are designed to be compiled for a specific target. Although it is possible
to compile a C++ program for just about any type of CPU, to do so requires a full C++ compiler
targeted for that CPU. The problem is that compilers are expensive and time-consuming to
create. An easier—and more cost-efficient—solution was needed. In an attempt to find such a
solution, Gosling and others began work on a portable, platform-independent language that
could be used to produce code that would run on a variety of CPUs under differing
environments. This effort ultimately led to the creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately
more important, factor was emerging that would play a crucial role in the future of Java.
This second force was, of course, the World Wide Web. Had the Web not taken shape at
about the same time that Java was being implemented, Java might have remained a useful
but obscure language for programming consumer electronics. However, with the emergence
of the World Wide Web, Java was propelled to the forefront of computer language design,
because the Web, too, demanded portable programs.

Chapter 1: The History and Evolution of Java

Most programmers learn early in their careers that portable programs are as elusive as they
are desirable. While the quest for a way to create efficient, portable (platform-independent)
programs is nearly as old as the discipline of programming itself, it had taken a back seat to
other, more pressing problems. Further, because (at that time) much of the computer world
had divided itself into the three competing camps of Intel, Macintosh, and UNIX, most
programmers stayed within their fortified boundaries, and the urgent need for portable
code was reduced. However, with the advent of the Internet and the Web, the old problem
of portability returned with a vengeance. After all, the Internet consists of a diverse,
distributed universe populated with various types of computers, operating systems, and
CPUs. Even though many kinds of platforms are attached to the Internet, users would like
them all to be able to run the same program. What was once an irritating but low-priority
problem had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems of
portability frequently encountered when creating code for embedded controllers are also
found when attempting to create code for the Internet. In fact, the same problem that Java
was initially designed to solve on a small scale could also be applied to the Internet on a
large scale. This realization caused the focus of Java to switch from consumer electronics
to Internet programming. So, while the desire for an architecture-neutral programming
language provided the initial spark, the Internet ultimately led to Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is by
intent. The Java designers knew that using the familiar syntax of C and echoing the
object-oriented features of C++ would make their language appealing to the legions of
experienced C/C++ programmers. In addition to the surface similarities, Java shares some
of the other attributes that helped make C and C++ successful. First, Java was designed,
tested, and refined by real, working programmers. It is a language grounded in the needs
and experiences of the people who devised it. Thus, Java is a programmer’s language.
Second, Java is cohesive and logically consistent. Third, except for those constraints
imposed by the Internet environment, Java gives you, the programmer, full control. If you
program well, your programs reflect it. If you program poorly, your programs reflect that,
too. Put differently, Java is not a language with training wheels. It is a language for
professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as simply
the “Internet version of C++.” However, to do so would be a large mistake. Java has significant
practical and philosophical differences. While it is true that Java was influenced by C++, it is
not an enhanced version of C++. For example, Java is neither upwardly nor downwardly
compatible with C++. Of course, the similarities with C++ are significant, and if you are a
C++ programmer, then you will feel right at home with Java. One other point: Java was not
designed to replace C++. Java was designed to solve a certain set of problems. C++ was
designed to solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two reasons:
to adapt to changes in environment and to implement advances in the art of programming.
The environmental change that prompted Java was the need for platform-independent
programs destined for distribution on the Internet. However, Java also embodies changes
in the way that people approach the writing of programs. For example, Java enhanced
and refined the object-oriented paradigm used by C++, added integrated support for
multithreading, and provided a library that simplified Internet access. In the final analysis,
though, it was not the individual features of Java that made it so remarkable. Rather, it was

8 Partl: The Java Language

the language as a whole. Java was the perfect response to the demands of the then newly
emerging, highly distributed computing universe. Java was to Internet programming what
C was to system programming: a revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become part
of the baseline for any new language. The success of Java is simply too important to ignore.
Perhaps the most important example of Java’s influence is C#. Created by Microsoft to
support the NET Framework, C# is closely related to Java. For example, both share the
same general syntax, support distributed programming, and utilize the same object model.
There are, of course, differences between Java and C#, but the overall “look and feel” of
these languages is very similar. This “cross-pollination” from Java to C# is the strongest
testimonial to date that Java redefined the way we think about and use a computer language.

How Java Changed the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn, had a
profound effect on the Internet. In addition to simplifying web programming in general,
Java innovated a new type of networked program called the applet that changed the way
the online world thought about content. Java also addressed some of the thorniest issues
associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the
Internet and automatically executed by a Java-compatible web browser. Furthermore, an
applet is downloaded on demand, without further interaction with the user. If the user
clicks a link that contains an applet, the applet will be automatically downloaded and run in
the browser. Applets are intended to be small programs. They are typically used to display
data provided by the server, handle user input, or provide simple functions, such as a loan
calculator, that execute locally, rather than on the server. In essence, the applet allows some
functionality to be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the
universe of objects that can move about freely in cyberspace. In general, there are two very
broad categories of objects that are transmitted between the server and the client: passive
information and dynamic, active programs. For example, when you read your e-mail, you are
viewing passive data. Even when you download a program, the program’s code is still only
passive data until you execute it. By contrast, the applet is a dynamic, self-executing program.
Such a program is an active agent on the client computer, yet it is initiated by the server.

As desirable as dynamic, networked programs are, they also present serious problems
in the areas of security and portability. Obviously, a program that downloads and executes
automatically on the client computer must be prevented from doing harm. It must also be
able to run in a variety of different environments and under different operating systems. As
you will see, Java solved these problems in an effective and elegant way. Let’s look a bit
more closely at each.

Chapter 1: The History and Evolution of Java

Security

As you are likely aware, every time you download a “normal” program, you are taking a
risk, because the code you are downloading might contain a virus, Trojan horse, or other
harmful code. At the core of the problem is the fact that malicious code can cause its damage
because it has gained unauthorized access to system resources. For example, a virus program
might gather private information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In order for Java
to enable applets to be downloaded and executed on the client computer safely, it was
necessary to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment
and not allowing it access to other parts of the computer. (You will see how this is
accomplished shortly.) The ability to download applets with confidence that no harm will
be done and that no security will be breached is considered by many to be the single most
innovative aspect of Java.

Portability

Portability is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run on
virtually any computer connected to the Internet, there needed to be some way to enable
that program to execute on different systems. For example, in the case of an applet, the
same applet must be able to be downloaded and executed by the wide variety of CPUs,
operating systems, and browsers connected to the Internet. It is not practical to have
different versions of the applet for different computers. The same code must work on all
computers. Therefore, some means of generating portable executable code was needed. As
you will soon see, the same mechanism that helps ensure security also helps create portability.

Java’s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just described
is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is
a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as
an interpreter for bytecode. This may come as a bit of a surprise since many modern languages
are designed to be compiled into executable code because of performance concerns. However,
the fact that a Java program is executed by the JVM helps solve the major problems associated
with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in
a wide variety of environments because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run
on it. Remember, although the details of the JVM will differ from platform to platform, all
understand the same Java bytecode. If a Java program were compiled to native code, then
different versions of the same program would have to exist for each type of CPU connected
to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode by
the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it can contain the program and prevent it from generating

10

Part I: The Java Language

side effects outside of the system. As you will see, safety is also enhanced by certain
restrictions that exist in the Java language.

In general, when a program is compiled to an intermediate form and then interpreted
by a virtual machine, it runs slower than it would run if compiled to executable code.
However, with Java, the differential between the two is not so great. Because bytecode has
been highly optimized, the use of bytecode enables the JVM to execute programs much
faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that
prevents on-the-fly compilation of bytecode into native code in order to boost performance.
For this reason, Sun began supplying its HotSpot technology not long after Java’s initial
release. HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler
is part of the JVM, selected portions of bytecode are compiled into executable code in real
time, on a piece-by-piece, demand basis. It is important to understand that it is not practical
to compile an entire Java program into executable code all at once, because Java performs
various run-time checks that can be done only at run time. Instead, a JIT compiler compiles
code as it is needed, during execution. Furthermore, not all sequences of bytecode are
compiled—only those that will benefit from compilation. The remaining code is simply
interpreted. However, the just-in-time approach still yields a significant performance boost.
Even when dynamic compilation is applied to bytecode, the portability and safety features
still apply, because the JVM is still in charge of the execution environment.

Servlets: Java on the Server Side

As useful as applets can be, they are just one half of the client/server equation. Not long
after the initial release of Java, it became obvious that Java would also be useful on the
server side. The result was the servlet. A servlet is a small program that executes on the
server. Just as applets dynamically extend the functionality of a web browser, servlets
dynamically extend the functionality of a web server. Thus, with the advent of the servlet,
Java spanned both sides of the client/server connection.

Servlets are used to create dynamically generated content that is then served to the
client. For example, an online store might use a servlet to look up the price for an item in a
database. The price information is then used to dynamically generate a web page that is sent
to the browser. Although dynamically generated content is available through mechanisms such
as CGI (Common Gateway Interface), the servlet offers several advantages, including
increased performance.

Because servlets (like all Java programs) are compiled into bytecode and executed
by the JVM, they are highly portable. Thus, the same servlet can be used in a variety of
different server environments. The only requirements are that the server support the JVM
and a servlet container.

The Java Buzzwords

No discussion of Java’s history is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security,
other factors also played an important role in molding the final form of the language. The
key considerations were summed up by the Java team in the following list of buzzwords:

Chapter 1: The History and Evolution of Java

® Simple

® Secure

e Portable

® Object-oriented

e Robust

e Multithreaded

e Architecture-neutral
® Interpreted

¢ High performance
e Distributed

® Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s
examine what each of the others implies.

Simple

Java was designed to be easy for the professional programmer to learn and use effectively.
Assuming that you have some programming experience, you will not find Java hard to master.
If you already understand the basic concepts of object-oriented programming, learning Java
will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will
require very little effort. Because Java inherits the C/C++ syntax and many of the
object-oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code compatible
with any other language. This allowed the Java team the freedom to design with a blank
slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing
liberally from many seminal object-software environments of the last few decades, Java
manages to strike a balance between the purist’s “everything is an object” paradigm and
the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy
to extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a program,
because the program must execute reliably in a variety of systems. Thus, the ability to create
robust programs was given a high priority in the design of Java. To gain reliability, Java
restricts you in a few key areas to force you to find your mistakes early in program
development. At the same time, Java frees you from having to worry about many of the
most common causes of programming errors. Because Java is a strictly typed language, it
checks your code at compile time. However, it also checks your code at run time. Many
hard-to-track-down bugs that often turn up in hard-to-reproduce run-time situations are
simply impossible to create in Java. Knowing that what you have written will behave in a
predictable way under diverse conditions is a key feature of Java.

11

12

Part I: The Java Language

To better understand how Java is robust, consider two of the main reasons for program
failure: memory management mistakes and mishandled exceptional conditions (that is,
run-time errors). Memory management can be a difficult, tedious task in traditional
programming environments. For example, in C/C++, the programmer must manually allocate
and free all dynamic memory. This sometimes leads to problems, because programmers will
either forget to free memory that has been previously allocated or, worse, try to free some
memory that another part of their code is still using. Java virtually eliminates these problems
by managing memory allocation and deallocation for you. (In fact, deallocation is completely
automatic, because Java provides garbage collection for unused objects.) Exceptional conditions
in traditional environments often arise in situations such as division by zero or “file not found,”
and they must be managed with clumsy and hard-to-read constructs. Java helps in this area
by providing object-oriented exception handling. In a well-written Java program, all run-time
errors can—and should—be managed by your program.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows
you to write programs that do many things simultaneously. The Java run-time system
comes with an elegant yet sophisticated solution for multiprocess synchronization that
enables you to construct smoothly running interactive systems. Java’s easy-to-use approach
to multithreading allows you to think about the specific behavior of your program, not the
multitasking subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of the
main problems facing programmers is that no guarantee exists that if you write a program
today, it will run tomorrow—even on the same machine. Operating system upgrades,
processor upgrades, and changes in core system resources can all combine to make a
program malfunction. The Java designers made several hard decisions in the Java language
and the Java Virtual Machine in an attempt to alter this situation. Their goal was “write
once; run anywhere, any time, forever.” To a great extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling

into an intermediate representation called Java bytecode. This code can be executed on

any system that implements the Java Virtual Machine. Most previous attempts at
cross-platform solutions have done so at the expense of performance. As explained earlier,
the Java bytecode was carefully designed so that it would be easy to translate directly into
native machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols. In fact, accessing a resource using a URL is not much different from accessing a
file. Java also supports Remote Method Invocation (RMI). This feature enables a program to
invoke methods across a network.

Chapter 1: The History and Evolution of Java

Dynamic

Java programs carry with them substantial amounts of run-time type information that

is used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness of
the Java environment, in which small fragments of bytecode may be dynamically updated
on a running system.

The Evolution of Java

The initial release of Java was nothing short of revolutionary, but it did not mark the end of
Java’s era of rapid innovation. Unlike most other software systems that usually settle into a
pattern of small, incremental improvements, Java continued to evolve at an explosive pace.
Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The
features added by Java 1.1 were more significant and substantial than the increase in the
minor revision number would have you think. Java 1.1 added many new library elements,
redefined the way events are handled, and reconfigured many features of the 1.0 library. It
also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus,
Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.”
The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern
age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the
first release of Java 2 used the 1.2 version number. The reason is that it originally referred
to the internal version number of the Java libraries, but then was generalized to refer to
the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform
Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections
Framework, and it enhanced the Java Virtual Machine and various programming tools. Java
2 also contained a few deprecations. The most important affected the Thread class in which
the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part,
it added to existing functionality and “tightened up” the development environment. In
general, programs written for version 1.2 and those written for version 1.3 are source-code
compatible. Although version 1.3 contained a smaller set of changes than the preceding
three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important
upgrades, enhancements, and additions. For example, it added the new keyword assert,
chained exceptions, and a channel-based I/O subsystem. It also made changes to the
Collections Framework and the networking classes. In addition, numerous small changes
were made throughout. Despite the significant number of new features, version 1.4
maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous
Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally
expanded the scope, power, and range of the language. To grasp the magnitude of the
changes that J2SE 5 made to Java, consider the following list of its major new features:

* Generics
* Annotations
¢ Autoboxing and auto-unboxing

14

Part I: The Java Language

® Enumerations

¢ Enhanced, for-each style for loop

® Variable-length arguments (varargs)
e Static import

® Formatted I/O

e Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list represents
a significant addition to the Java language. Some, such as generics, the enhanced for, and
varargs, introduce new syntax elements. Others, such as autoboxing and auto-unboxing,
alter the semantics of the language. Annotations add an entirely new dimension to
programming. In all cases, the impact of these additions went beyond their direct effects.
They changed the very character of Java itself.

The importance of these new features is reflected in the use of the version number
“5.” The next version number for Java would normally have been 1.5. However, the new
features were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the
magnitude of the change. Instead, Sun elected to increase the version number to 5 as a way
of emphasizing that a major event was taking place. Thus, it was named J2SE 5, and the
developer’s kit was called JDK 5. However, in order to maintain consistency, Sun decided
to use 1.5 as its internal version number, which is also referred to as the developer version
number. The “5” in J2SE 5 is called the product version number.

Java SE 6

The newest release of Java is called Java SE 6, and the material in this book has been updated
to reflect this latest version of Java. With the release of Java SE 6, Sun once again decided to
change the name of the Java platform. First, notice that the “2” has been dropped. Thus, the
platform now has the name Java SE, and the official product name is Java Platform, Standard
Edition 6. As with J2SE 5, the 6 in Java SE 6 is the product version number. The internal,
developer version number is 1.6.

Java SE 6 builds on the base of J2SE 5, adding incremental improvements. Java SE 6
adds no major features to the Java language proper, but it does enhance the API libraries,
add several new packages, and offer improvements to the run time. As it relates to this
book, it is the changes to the core API that are the most notable. Many of the packages
have new classes, and many of the classes have new methods. These changes are indicated
throughout the book. In general, the release of Java SE 6 serves to further solidify the
advances made by J2SE 5.

A Culture of Innovation

Since the beginning, Java has been at the center of a culture of innovation. Its original release
redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode
changed the way we think about security and portability. The applet (and then the servlet)
made the Web come alive. The Java Community Process (JCP) redefined the way that new
ideas are assimilated into the language. The world of Java has never stood still for very
long. Java SE 6 is the latest release in Java’s ongoing, dynamic history.

CHAPTER
An Overview of Java

Rather, they work together to form the language as a whole. However, this

interrelatedness can make it difficult to describe one aspect of Java without
involving several others. Often a discussion of one feature implies prior knowledge of
another. For this reason, this chapter presents a quick overview of several key features
of Java. The material described here will give you a foothold that will allow you to write
and understand simple programs. Most of the topics discussed will be examined in greater
detail in the remaining chapters of Part I.

ﬁ s in all other computer languages, the elements of Java do not exist in isolation.

Object-Oriented Programming

Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at
least some extent object-oriented. OOP is so integral to Java that it is best to understand its
basic principles before you begin writing even simple Java programs. Therefore, this chapter
begins with a discussion of the theoretical aspects of OOP.

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a program can
be conceptually organized around its code or around its data. That is, some programs are
written around “what is happening” and others are written around “who is being affected.”
These are the two paradigms that govern how a program is constructed. The first way is
called the process-oriented model. This approach characterizes a program as a series of linear
steps (that is, code). The process-oriented model can be thought of as code acting on data.
Procedural languages such as C employ this model to considerable success. However, as
mentioned in Chapter 1, problems with this approach appear as programs grow larger and
more complex.

To manage increasing complexity, the second approach, called object-oriented programming,
was conceived. Object-oriented programming organizes a program around its data (that is,
objects) and a set of well-defined interfaces to that data. An object-oriented program can be
characterized as data controlling access to code. As you will see, by switching the controlling
entity to data, you can achieve several organizational benefits.

15

16

Part I: The Java Language

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of tens
of thousands of individual parts. They think of it as a well-defined object with its own
unique behavior. This abstraction allows people to use a car to drive to the grocery store
without being overwhelmed by the complexity of the parts that form the car. They can
ignore the details of how the engine, transmission, and braking systems work. Instead,
they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see that
the car consists of several subsystems: steering, brakes, sound system, seat belts, heating,
cellular phone, and so on. In turn, each of these subsystems is made up of more specialized
units. For instance, the sound system consists of a radio, a CD player, and/or a tape player.
The point is that you manage the complexity of the car (or any other complex system)
through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.
The data from a traditional process-oriented program can be transformed by abstraction
into its component objects. A sequence of process steps can become a collection of messages
between these objects. Thus, each of these objects describes its own unique behavior. You
can treat these objects as concrete entities that respond to messages telling them to do something.
This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural paradigm
for creating programs that survive the inevitable changes accompanying the life cycle of any
major software project, including conception, growth, and aging. For example, once you
have well-defined objects and clean, reliable interfaces to those objects, you can gracefully
decommission or replace parts of an older system without fear.

The Three O0P Principles

All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s take
a look at these concepts now.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse. One way to think about encapsulation
is as a protective wrapper that prevents the code and data from being arbitrarily accessed
by other code defined outside the wrapper. Access to the code and data inside the wrapper
is tightly controlled through a well-defined interface. To relate this to the real world, consider
the automatic transmission on an automobile. It encapsulates hundreds of bits of information
about your engine, such as how much you are accelerating, the pitch of the surface you are
on, and the position of the shift lever. You, as the user, have only one method of affecting

Chapter 2: An Overview of Java 17

this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission
by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a
well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the
transmission does not affect objects outside the transmission. For example, shifting gears
does not turn on the headlights! Because an automatic transmission is encapsulated, dozens
of car manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming.
The power of encapsulated code is that everyone knows how to access it and thus can use

it regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in great
detail later in this book, the following brief discussion will be helpful now. A class defines
the structure and behavior (data and code) that will be shared by a set of objects. Each object
of a given class contains the structure and behavior defined by the class, as if it were stamped
out by a mold in the shape of the class. For this reason, objects are sometimes referred to as
instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class.
Collectively, these elements are called members of the class. Specifically, the data defined by
the class are referred to as member variables or instance variables. The code that operates on
that data is referred to as member methods or just methods. (If you are familiar with C/C++, it
may help to know that what a Java programmer calls a method, a C/C++ programmer calls a
function.) In properly written Java programs, the methods define how the member variables
can be used. This means that the behavior and interface of a class are defined by the methods
that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable in a
class may be marked private or public. The public interface of a class represents everything
that external users of the class need to know, or may know. The private methods and data
can only be accessed by code that is a member of the class. Therefore, any other code that
is not a member of the class cannot access a private method or variable. Since the private
members of a class may only be accessed by other parts of your program through the class’
public methods, you can ensure that no improper actions take place. Of course, this means
that the public interface should be carefully designed not to expose too much of the inner
workings of a class (see Figure 2-1).

Inheritance

Inheritance is the process by which one object acquires the properties of another object. This
is important because it supports the concept of hierarchical classification. As mentioned
earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications.
For example, a Golden Retriever is part of the classification dog, which in turn is part of the
mammal class, which is under the larger class animal. Without the use of hierarchies, each
object would need to define all of its characteristics explicitly. However, by use of inheritance,
an object need only define those qualities that make it unique within its class. It can inherit
its general attributes from its parent. Thus, it is the inheritance mechanism that makes it
possible for one object to be a specific instance of a more general case. Let’s take a closer
look at this process.

18

Part I: The Java Language

FIGURE 21

Encapsulation: Public » A Class
public methods instance variables
can be used to (not recommended)

protect private

data / \ /\ / L\
public A\ AN e

methods < L
[L ee
Private A L A L L A

methods / \

Private
instance variables

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size, intelligence,
and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe,
and sleep. This description of attributes and behavior is the class definition for animals.

If you wanted to describe a more specific class of animals, such as mammals, they would
have more specific attributes, such as type of teeth, and mammary glands. This is known as
a subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the attributes
from animals. A deeply inherited subclass inherits all of the attributes from each of its ancestors
in the class hierarchy.

[Mammal] [Reptile...]

[Canine] [Feline...]

Domesticusj [Lupus...]

N

(Retriever

oy

[Poodle... j

/

[Labrador] [Golden]

Chapter 2: An Overview of Java 19

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part of its
specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow
in complexity linearly rather than geometrically. A new subclass inherits all of the attributes
of all of its ancestors. It does not have unpredictable interactions with the majority of the rest
of the code in the system.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to
be used for a general class of actions. The specific action is determined by the exact nature

Animal

Age Weight

Mammal Gestation

Period

| Litter Size__

(Hunting Ski Canine

Domesticus

Leash Trained? »
Indoor/Outdoor

(Duck Hunting Trained? RS
Labrador AKC Certified?
Labrador
Age Gestation Period Leash Trained?
Sex Hunting Skills Duck Hunting Trained?
Weight Tail Length? AKC Certified?

Litter Size Indoor / Outdoor?

FIGURE 2-2

Labrador inherits the encapsulation of all its superclasses

20

Part I: The Java Language

of the situation. Consider a stack (which is a last-in, first-out list). You might have a program
that requires three types of stacks. One stack is used for integer values, one for floating-point
values, and one for characters. The algorithm that implements each stack is the same, even
though the data being stored differs. In a non—object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in Java you can specify a general set of stack routines
that all share the same names.

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to
a group of related activities. This helps reduce complexity by allowing the same interface
to be used to specify a general class of action. It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation. You, the programmer, do not need to make
this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a cat,
it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl.
The same sense of smell is at work in both situations. The difference is what is being smelled,
that is, the type of data being operated upon by the dog’s nose! This same general concept
can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together

When properly applied, polymorphism, encapsulation, and inheritance combine to produce
a programming environment that supports the development of far more robust and scalable
programs than does the process-oriented model. A well-designed hierarchy of classes is the
basis for reusing the code in which you have invested time and effort developing and testing.
Encapsulation allows you to migrate your implementations over time without breaking the
code that depends on the public interface of your classes. Polymorphism allows you to create
clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but
cars are more like programs. All drivers rely on inheritance to drive different types (subclasses)
of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family
minivan, drivers can all more or less find and operate the steering wheel, the brakes, and
the accelerator. After a bit of gear grinding, most people can even manage the difference
between a stick shift and an automatic, because they fundamentally understand their common
superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas pedals
hide an incredible array of complexity with an interface so simple you can operate them
with your feet! The implementation of the engine, the style of brakes, and the size of the
tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get an
antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-,
or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering
wheel to change direction, and press the accelerator when you want to move. The same
interface can be used to control a number of different implementations.

Chapter 2: An Overview of Java

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented principles,
the various parts of a complex program can be brought together to form a cohesive, robust,
maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put
more precisely, every Java program involves encapsulation, inheritance, and polymorphism.
Although the short example programs shown in the rest of this chapter and in the next few
chapters may not seem to exhibit all of these features, they are nevertheless present. As you
will see, many of the features supplied by Java are part of its built-in class libraries, which
do make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program

Now that the basic object-oriented underpinning of Java has been discussed, let’s look at
some actual Java programs. Let’s start by compiling and running the short sample program
shown here. As you will see, this involves a little more work than you might imagine.

/*
This is a simple Java program.
Call this file "Example.java".
*/
class Example {
// Your program begins with a call to main() .
public static void main(String argsl[]) {
System.out.println("This is a simple Java program.") ;

}
}

NOTE The descriptions that follow use the standard Java SE 6 Development Kit (JDK 6), which is
available from Sun Microsystems. If you are using a different Java development environment,
then you may need to follow a different procedure for compiling and executing Java programs.
In this case, consult your compiler’s documentation for details.

Entering the Program

For most computer languages, the name of the file that holds the source code to a program
is immaterial. However, this is not the case with Java. The first thing that you must learn
about Java is that the name you give to a source file is very important. For this example,
the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains one
or more class definitions. The Java compiler requires that a source file use the .java filename
extension.

As you can see by looking at the program, the name of the class defined by the program
is also Example. This is not a coincidence. In Java, all code must reside inside a class. By
convention, the name of that class should match the name of the file that holds the program.
You should also make sure that the capitalization of the filename matches the class name.

22

Part I: The Java Language

The reason for this is that Java is case-sensitive. At this point, the convention that filenames
correspond to class names may seem arbitrary. However, this convention makes it easier to
maintain and organize your programs.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the
source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version
of the program. As discussed earlier, the Java bytecode is the intermediate representation of
your program that contains instructions the Java Virtual Machine will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher, called java.
To do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example
When the program is run, the following output is displayed:
This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file
named after the class and using the .class extension. This is why it is a good idea to give
your Java source files the same name as the class they contain—the name of the source file
will match the name of the .class file. When you execute java as just shown, you are actually
specifying the name of the class that you want to execute. It will automatically search for
a file by that name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features that are common to
all Java programs. Let’s closely examine each part of the program.
The program begins with the following lines:

/*
This is a simple Java program.
Call this file "Example.java".
*/

This is a comment. Like most other programming languages, Java lets you enter a remark into
a program’s source file. The contents of a comment are ignored by the compiler. Instead, a
comment describes or explains the operation of the program to anyone who is reading its
source code. In this case, the comment describes the program and reminds you that the source
file should be called Example.java. Of course, in real applications, comments generally explain
how some part of the program works or what a specific feature does.

Chapter 2: An Overview of Java

Java supports three styles of comments. The one shown at the top of the program is called
a multiline comment. This type of comment must begin with /* and end with */. Anything
between these two comment symbols is ignored by the compiler. As the name suggests, a
multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an
identifier that is the name of the class. The entire class definition, including all of its members,
will be between the opening curly brace ({) and the closing curly brace (}). For the moment,
don’t worry too much about the details of a class except to note that in Java, all program
activity occurs within one. This is one reason why all Java programs are (at least a little bit)
object-oriented.

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main() .

This is the second type of comment supported by Java. A single-line comment begins with
a // and ends at the end of the line. As a general rule, programmers use multiline comments
for longer remarks and single-line comments for brief, line-by-line descriptions. The third
type of comment, a documentation comment, will be discussed in the “Comments” section later
in this chapter.

The next line of code is shown here:

public static void main(String argsl[]) ({

This line begins the main() method. As the comment preceding it suggests, this is the line
at which the program will begin executing. All Java applications begin execution by calling
main(). The full meaning of each part of this line cannot be given now, since it involves
a detailed understanding of Java’s approach to encapsulation. However, since most of the
examples in the first part of this book will use this line of code, let’s take a brief look at each
part now.

The public keyword is an access specifier, which allows the programmer to control the
visibility of class members. When a class member is preceded by public, then that member
may be accessed by code outside the class in which it is declared. (The opposite of public
is private, which prevents a member from being used by code defined outside of its class.)
In this case, main() must be declared as public, since it must be called by code outside of
its class when the program is started. The keyword static allows main() to be called without
having to instantiate a particular instance of the class. This is necessary since main() is
called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value. As you will see, methods may also
return values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind that
Java is case-sensitive. Thus, Main is different from main. It is important to understand that
the Java compiler will compile classes that do not contain a main() method. But java has no
way to run these classes. So, if you had typed Main instead of main, the compiler would

23

24

Part I: The Java Language

still compile your program. However, java would report an error because it would be unable
to find the main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are called
parameters. If there are no parameters required for a given method, you still need to include
the empty parentheses. In main(), there is only one parameter, albeit a complicated one. String
args|] declares a parameter named args, which is an array of instances of the class String.
(Arrays are collections of similar objects.) Objects of type String store character strings. In this
case, args receives any command-line arguments present when the program is executed.
This program does not make use of this information, but other programs shown later in this
book will.

The last character on the line is the {. This signals the start of main()’s body. All of the
code that comprises a method will occur between the method’s opening curly brace and its
closing curly brace.

One other point: main() is simply a starting place for your program. A complex program
will have dozens of classes, only one of which will need to have a main() method to get
things started. When you begin creating applets—]Java programs that are embedded in web
browsers—you won’t use main() at all, since the web browser uses a different means of
starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.") ;

This line outputs the string “This is a simple Java program.” followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this case, println()
displays the string which is passed to it. As you will see, println() can be used to display
other types of information, too. The line begins with System.out. While too complicated to
explain in detail at this time, briefly, System is a predefined class that provides access to the
system, and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in
most real-world Java programs and applets. Since most modern computing environments
are windowed and graphical in nature, console I/O is used mostly for simple utility
programs and for demonstration programs. Later in this book, you will learn other ways to
generate output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end
with a semicolon. The reason that the other lines in the program do not end in a semicolon
is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program

Perhaps no other concept is more fundamental to a programming language than that of a
variable. As you probably know, a variable is a named memory location that may be assigned
a value by your program. The value of a variable may be changed during the execution of
the program. The next program shows how a variable is declared and how it is assigned a
value. The program also illustrates some new aspects of console output. As the comments
at the top of the program state, you should call this file Example2.java.

Chapter 2: An Overview of Java

/*
Here is another short example.
Call this file "Example2.java".
*/

class Example2 {
public static void main(String argsl[]) {
int num; // this declares a variable called num
num = 100; // this assigns num the value 100
System.out.println("This is num: " + num);

num = num * 2;

System.out.print ("The value of num * 2 is ");
System.out.println (num) ;

}
}

When you run this program, you will see the following output:

This is num: 100
The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program
is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires
that variables be declared before they are used.
Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the variable.
If you want to declare more than one variable of the specified type, you may use a comma-
separated list of variable names. Java defines several data types, including integer, character,
and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string “This is num:”.

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string that
precedes it, and then the resulting string is output. (Actually, num is first converted from an
integer into its string equivalent and then concatenated with the string that precedes it. This

25

26

Part I: The Java Language

process is described in detail later in this book.) This approach can be generalized. Using
the + operator, you can join together as many items as you want within a single println()
statement.

The next line of code assigns num the value of num times 2. Like most other languages,
Java uses the * operator to indicate multiplication. After this line executes, num will contain
the value 200.

Here are the next two lines in the program:

System.out .print ("The value of num * 2 is ");
System.out.println (num) ;

Several new things are occurring here. First, the built-in method print() is used to display
the string “The value of num * 2 is ”. This string is not followed by a newline. This means
that when the next output is generated, it will start on the same line. The print() method is
just like printIn(), except that it does not output a newline character after each call. Now
look at the call to println(). Notice that num is used by itself. Both print() and println()
can be used to output values of any of Java’s built-in types.

Two Control Statements

Although Chapter 5 will look closely at control statements, two are briefly introduced here so
that they can be used in example programs in Chapters 3 and 4. They will also help illustrate
an important aspect of Java: blocks of code.

The if Statement

The Java if statement works much like the IF statement in any other language. Further, it is
syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.
If condition is false, then the statement is bypassed. Here is an example:

if (num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is
true, and println() will execute. If num contains a value greater than or equal to 100, then
the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than
== Equal to

Notice that the test for equality is the double equal sign.

Chapter 2: An Overview of Java

Here is a program that illustrates the if statement:

/*

Demonstrate the if.

Call this file "IfSample.java".
*/
class IfSample {
public static void main(String args[]) {
int x, y;

x = 10;
y = 20;

if (x < y) System.out.println("x is less than y");

X =X * 2;
if (x == y) System.out.println("x now equal to y");

X =X * 2;
if (x > y) System.out.println("x now greater than y");

// this won't display anything
if(x == y) System.out.println("you won't see this");
}
}

The output generated by this program is shown here:

x is less than y
X now equal to y
X now greater than y

Notice one other thing in this program. The line
int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop

As you may know from your previous programming experience, loop statements are an
important part of nearly any programming language. Java is no exception. In fact, as you
will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the
most versatile is the for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable
to an initial value. The condition is a Boolean expression that tests the loop control variable.
If the outcome of that test is true, the for loop continues to iterate. If it is false, the loop

21

28

Part I: The Java Language

terminates. The iteration expression determines how the loop control variable is changed
each time the loop iterates. Here is a short program that illustrates the for loop:

/*

Demonstrate the for loop.

Call this file "ForTest.java".
*/
class ForTest ({
public static void main(String argsl[]) {
int x;

for(x = 0; x<10; x = xX+1)
System.out.println("This is x: " + x);

}
}

This program generates the following output:

This is x: 0
This is x: 1
This is x: 2
This is x: 3
This is x: 4
This is x: 5
This is x: 6
This is x: 7
This is x: 8
This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization portion
of the for. At the start of each iteration (including the first one), the conditional test x < 10 is
performed. If the outcome of this test is true, the println() statement is executed, and then
the iteration portion of the loop is executed. This process continues until the conditional test
is false.

As a point of interest, in professionally written Java programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you will
seldom see statements like this:

The reason is that Java includes a special increment operator which performs this operation
more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The
increment operator increases its operand by one. By use of the increment operator, the
preceding statement can be written like this:

X++;

Thus, the for in the preceding program will usually be written like this:

Chapter 2: An Overview of Java 29

for(x = 0; x<10; xX++)

You might want to try this. As you will see, the loop still runs exactly the same as it did
before.

Java also provides a decrement operator, which is specified as — —. This operator decreases
its operand by one.

Using Blocks of Code

Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once a
block of code has been created, it becomes a logical unit that can be used any place that a
single statement can. For example, a block can be a target for Java’s if and for statements.
Consider this if statement:

if(x < y) { // begin a block
X = y;
y = 0;

} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the two
statements inside the block form a logical unit, and one statement cannot execute without
the other also executing. The key point here is that whenever you need to logically link two
or more statements, you do so by creating a block.

Let’s look at another example. The following program uses a block of code as the target
of a for loop.

/*

Demonstrate a block of code.

Call this file "BlockTest.java"
*/
class BlockTest {
public static void main(String argsl[]) {
int x, y;

y = 20;

// the target of this loop is a block

for(x = 0; x<10; x++) {
System.out.println("This is x: " + x);
System.out.println("This is y: " + y);
y =Y - 2;

}
}

The output generated by this program is shown here:

This is x: 0
This is y: 20

30 Partl: The Java Language

This is
This is
This is
This is
This is
This is

This is x: 1
This is y: 18
This is x: 2
This is y: 16
This is x: 3
This is y: 14
This is x: 4
This is y: 12
This is x: 5
This is y: 10
This is x: 6
This is vy:

X:

v:

X:

v:

X:

v:

In this case, the target of the for loop is a block of code and not just a single statement.
Thus, each time the loop iterates, the three statements inside the block will be executed.
This fact is, of course, evidenced by the output generated by the program.

As you will see later in this book, blocks of code have additional properties and uses.
However, the main reason for their existence is to create logically inseparable units of code.

Lexical Issues

Now that you have seen several short Java programs, it is time to more formally describe
the atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals,
comments, operators, separators, and keywords. The operators are described in the next
chapter. The others are described next.

Whitespace

Java is a free-form language. This means that you do not need to follow any special indentation
rules. For instance, the Example program could have been written all on one line or in any
other strange way you felt like typing it, as long as there was at least one whitespace character
between each token that was not already delineated by an operator or separator. In Java,
whitespace is a space, tab, or newline.

Identifiers

Identifiers are used for class names, method names, and variable names. An identifier may
be any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore
and dollar-sign characters. They must not begin with a number, lest they be confused with a
numeric literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value.
Some examples of valid identifiers are

AvgTemp ‘ count a4 $test this_is_ok

Chapter 2: An Overview of Java 31

Invalid identifier names include these:

‘ 2count high-temp ‘ Not/ok

Literals

A constant value in Java is created by using a literal representation of it. For example, here
are some literals:

100 98.6 X' "This is a test" |

Left to right, the first literal specifies an integer, the next is a floating-point value, the third is
a character constant, and the last is a string. A literal can be used anywhere a value of its type
is allowed.

Comments

As mentioned, there are three types of comments defined by Java. You have already seen two:
single-line and multiline. The third type is called a documentation comment. This type of comment
is used to produce an HTML file that documents your program. The documentation comment
begins with a /** and ends with a */. Documentation comments are explained in Appendix A.

Separators

In Java, there are a few characters that are used as separators. The most commonly used
separator in Java is the semicolon. As you have seen, it is used to terminate statements.
The separators are shown in the following table:

Symbol Name Purpose

() Parentheses |Used to contain lists of parameters in method definition and invocation.
Also used for defining precedence in expressions, containing expressions
in control statements, and surrounding cast types.

{} Braces Used to contain the values of automatically initialized arrays. Also used
to define a block of code, for classes, methods, and local scopes.

[1] Brackets Used to declare array types. Also used when dereferencing array values.
; Semicolon |Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also used to
chain statements together inside a for statement.

Period Used to separate package names from subpackages and classes. Also
used to separate a variable or method from a reference variable.

The Java Keywords

There are 50 keywords currently defined in the Java language (see Table 2-1). These keywords,
combined with the syntax of the operators and separators, form the foundation of the Java
language. These keywords cannot be used as names for a variable, class, or method.

32

Part I: The Java Language

abstract continue for new switch
assert default goto package synchronized
boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient
catch extends int short try

char final interface static void

class finally long strictfp volatile
const float native super while

TABLE 2-1 Java Keywords

The keywords const and goto are reserved but not used. In the early days of Java, several
other keywords were reserved for possible future use. However, the current specification for
Java only defines the keywords shown in Table 2-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are
values defined by Java. You may not use these words for the names of variables, classes,
and so on.

The Java Class Libraries

The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are members of the System class,
which is a class predefined by Java that is automatically included in your programs. In the
larger view, the Java environment relies on several built-in class libraries that contain many
built-in methods that provide support for such things as I/0O, string handling, networking,
and graphics. The standard classes also provide support for windowed output. Thus, Java
as a totality is a combination of the Java language itself, plus its standard classes. As you
will see, the class libraries provide much of the functionality that comes with Java. Indeed,
part of becoming a Java programmer is learning to use the standard Java classes. Throughout
Part I of this book, various elements of the standard library classes and methods are described
as needed. In Part II, the class libraries are described in detail.

CHAPTER

Data Types, Variables,
and Arrays

and arrays. As with all modern programming languages, Java supports several types
of data. You may use these types to declare variables and to create arrays. As you will
see, Java’s approach to these items is clean, efficient, and cohesive.

This chapter examines three of Java’s most fundamental elements: data types, variables,

Java Is a Strongly Typed Language

It is important to state at the outset that Java is a strongly typed language. Indeed, part of
Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked for
type compatibility. There are no automatic coercions or conversions of conflicting types as
in some languages. The Java compiler checks all expressions and parameters to ensure that
the types are compatible. Any type mismatches are errors that must be corrected before the
compiler will finish compiling the class.

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean.
The primitive types are also commonly referred to as simple types, and both terms will be
used in this book. These can be put in four groups:

¢ Integers This group includes byte, short, int, and long, which are for whole-valued
signed numbers.

¢ Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

33

34

Part I: The Java Language

® Characters This group includes char, which represents symbols in a character set,
like letters and numbers.

® Boolean This group includes boolean, which is a special type for representing
true/false values.

You can use these types as-is, or to construct arrays or your own class types. Thus, they
form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the primitive types are not. They are analogous to
the simple types found in most other non-object-oriented languages. The reason for this is
efficiency. Making the primitive types into objects would have degraded performance too much.

The primitive types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the dictates
of the execution environment. However, Java is different. Because of Java’s portability
requirement, all data types have a strictly defined range. For example, an int is always 32 bits,
regardless of the particular platform. This allows programs to be written that are guaranteed
to run without porting on any machine architecture. While strictly specifying the size of an
integer may cause a small loss of performance in some environments, it is necessary in order
to achieve portability.

Let’s look at each type of data in turn.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages support both signed and unsigned integers. However, Java’s designers
felt that unsigned integers were unnecessary. Specifically, they felt that the concept of unsigned
was used mostly to specify the behavior of the high-order bit, which defines the sign of an integer
value. As you will see in Chapter 4, Java manages the meaning of the high-order bit differently,
by adding a special “unsigned right shift” operator. Thus, the need for an unsigned integer type
was eliminated.

The width of an integer type should not be thought of as the amount of storage it consumes,
but rather as the behavior it defines for variables and expressions of that type. The Java run-time
environment is free to use whatever size it wants, as long as the types behave as you declared
them. The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
int 32 -2,147,483,648 to 2,147,483,647

short 16 -32,768 to 32,767

byte 8 -128 to 127

Let’s look at each type of integer.

Chapter 3: Data Types, Variables, and Arrays

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from —128 to 127.
Variables of type byte are especially useful when you're working with a stream of data from
a network or file. They are also useful when you're working with raw binary data that may
not be directly compatible with Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c¢;

short

short is a signed 16-bit type. It has a range from —32,768 to 32,767. It is probably the least-used
Java type. Here are some examples of short variable declarations:

short s;
short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range
from —2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Although you might think that
using a byte or short would be more efficient than using an int in situations in which the
larger range of an int is not needed, this may not be the case. The reason is that when byte
and short values are used in an expression they are promoted to int when the expression is
evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the best
choice when an integer is needed.

long

long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value. The range of a long is quite large. This makes it useful
when big, whole numbers are needed. For example, here is a program that computes the
number of miles that light will travel in a specified number of days.

// Compute distance light travels using long variables.
class Light {
public static void main(String argsl[]) {
int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;

days = 1000; // specify number of days here

35

36

Part I: The Java Language

seconds = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds; // compute distance
System.out.print ("In " + days);

System.out.print (" days light will travel about ");
System.out.println(distance + " miles.");

}
}

This program generates the following output:
In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating expressions
that require fractional precision. For example, calculations such as square root, or transcendentals
such as sine and cosine, result in a value whose precision requires a floating-point type. Java
implements the standard (IEEE-754) set of floating-point types and operators. There are two
kinds of floating-point types, float and double, which represent single- and double-precision
numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range
double 64 4.9e-324 to 1.8e+308
float 32 1.4e-045 to 3.4e+038

Each of these floating-point types is examined next.

float

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is
faster on some processors and takes half as much space as double precision, but will become
imprecise when the values are either very large or very small. Variables of type float are useful
when you need a fractional component, but don’t require a large degree of precision. For
example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have been
optimized for high-speed mathematical calculations. All transcendental math functions, such
as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy over

Chapter 3: Data Types, Variables, and Arrays

many iterative calculations, or are manipulating large-valued numbers, double is the best
choice.
Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area {
public static void main(String argsl[]) {
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately
a =pi*xr * r; // compute area

System.out.println ("Area of circle is " + a);

}
}

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers beware:
char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This is not the
case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully
international character set that can represent all of the characters found in all human
languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic,
Hebrew, Katakana, Hangul, and many more. For this purpose, it requires 16 bits. Thus, in
Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars.
The standard set of characters known as ASCII still ranges from 0 to 127 as always, and the
extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is designed to
allow programs to be written for worldwide use, it makes sense that it would use Unicode to
represent characters. Of course, the use of Unicode is somewhat inefficient for languages such
as English, German, Spanish, or French, whose characters can easily be contained within 8 bits.
But such is the price that must be paid for global portability.

NoT1E More information about Unicode can be found at http://www.unicode.org.
Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
public static void main(String args[]) {
char chl, ch2;

chl = 88; // code for X
ch2 = 'Y'";

System.out.print ("chl and ch2: ");
System.out.println(chl + " " + ch2);

http://www.unicode.org

38

Part I: The Java Language

This program displays the following output:
chl and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127
values in the Unicode character set. For this reason, all the “old tricks” that you may have
used with characters in other languages will work in Java, too.

Although char is designed to hold Unicode characters, it can also be thought of as an
integer type on which you can perform arithmetic operations. For example, you can add
two characters together, or increment the value of a character variable. Consider the
following program:

// char variables behave like integers.
class CharDemo2 {
public static void main(String argsl[]) {
char chil;

chl = 'X';
System.out.println("chl contains " + chl);

chl++; // increment chl
System.out.println("chl is now " + chl);

}
}

The output generated by this program is shown here:

chl contains X
chl is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in ch1
containing Y, the next character in the ASCII (and Unicode) sequence.

Booleans

Java has a primitive type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, as in the
case of a <b. boolean is also the type required by the conditional expressions that govern
the control statements such as if and for.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolTest {
public static void main(String argsl[]) {
boolean b;

b = false;
System.out.println("b is " + b);
b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

Chapter 3: Data Types, Variables, and Arrays

if (b) System.out.println("This is executed.");

b = false;
if (b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

The output generated by this program is shown here:

b is false

b is true

This is executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can see, when
a boolean value is output by println(), “true” or “false” is displayed. Second, the value of a
boolean variable is sufficient, by itself, to control the if statement. There is no need to write
an if statement like this:

if (b == true)

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the
expression 10 > 9 displays the value “true.” Further, the extra set of parentheses around 10 > 9
is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals

Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally
described, let’s take a closer look at them.

Integer Literals

Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,
meaning they are describing a base 10 number. There are two other bases which can be used
in integer literals, octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java
by a leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly
valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7 range.
A more common base for numbers used by programmers is hexadecimal, which matches
cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a hexadecimal
constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is 0 to 15, so A
through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is
strongly typed, you might be wondering how it is possible to assign an integer literal to one
of Java’s other integer types, such as byte or long, without causing a type mismatch error.
Fortunately, such situations are easily handled. When a literal value is assigned to a byte or
short variable, no error is generated if the literal value is within the range of the target type.

40

Part I: The Java Language

An integer literal can always be assigned to a long variable. However, to specify a long
literal, you will need to explicitly tell the compiler that the literal value is of type long. You
do this by appending an upper- or lowercase L to the literal. For example, Ox7ffffffffffffffl.
or 9223372036854775807L is the largest long. An integer can also be assigned to a char as
long as it is within range.

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be
expressed in either standard or scientific notation. Standard notation consists of a whole number
component followed by a decimal point followed by a fractional component. For example, 2.0,
3.14159, and 0.6667 represent valid standard-notation floating-point numbers. Scientific notation
uses a standard-notation, floating-point number plus a suffix that specifies a power of 10 by
which the number is to be multiplied. The exponent is indicated by an E or e followed by a
decimal number, which can be positive or negative. Examples include 6.022E23, 314159E-05,
and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you
must append an F or f to the constant. You can also explicitly specify a double literal by
appending a D or d. Doing so is, of course, redundant. The default double type consumes 64
bits of storage, while the less-accurate float type requires only 32 bits.

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can have,
true and false. The values of true and false do not convert into any numerical representation.
The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, they can only
be assigned to variables declared as boolean, or used in expressions with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that can
be converted into integers and manipulated with the integer operators, such as the addition
and subtraction operators. A literal character is represented inside a pair of single quotes. All
of the visible ASCII characters can be directly entered inside the quotes, such as ‘a’, z’, and ‘@".
For characters that are impossible to enter directly, there are several escape sequences that allow
you to enter the character you need, such as “\” for the single-quote character itself and “\n’ for
the newline character. There is also a mechanism for directly entering the value of a character in
octal or hexadecimal. For octal notation, use the backslash followed by the three-digit
number. For example, "\141"is the letter ‘a”. For hexadecimal, you enter a backslash-u (\u), then
exactly four hexadecimal digits. For example, “\120061"is the ISO-Latin-1 ‘a”because the top byte
is zero. "\ua432is a Japanese Katakana character. Table 3-1 shows the character escape sequences.

String Literals

String literals in Java are specified like they are in most other languages—by enclosing
a sequence of characters between a pair of double quotes. Examples of string literals are

“Hello World”
“two\nlines”
“\"This is in quotes\””

Chapter 3: Data Types, Variables, and Arrays

TABLE 31 Escape Sequence Description
Character Escape
Sequences \ddd Octal character (ddd)
\UXXXX Hexadecimal Unicode character (xxxx)
\' Single quote
\" Double quote
\\ Backslash
\r Carriage return
\n New line (also known as line feed)
\f Form feed
\t Tab
\b Backspace

The escape sequences and octal/hexadecimal notations that were defined for character
literals work the same way inside of string literals. One important thing to note about Java
strings is that they must begin and end on the same line. There is no line-continuation escape
sequence as there is in some other languages.

NOTE As you may know, in some other languages, including C/C++, strings are implemented as
arrays of characters. However, this is not the case in Java. Strings are actually object types. As
you will see later in this book, because Java implements strings as objects, Java includes extensive
string-handling capabilities that are both powerful and easy to use.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have
a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep in mind
that the initialization expression must result in a value of the same (or compatible) type as that
specified for the variable. To declare more than one variable of the specified type, use a comma-
separated list.

42

Part I: The Java Language

Here are several examples of variable declarations of various types. Note that some
include an initialization.

int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, £ = 5; // declares three more ints, initializing

// d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates their
type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows variables

to be initialized dynamically, using any expression valid at the time the variable is declared.
For example, here is a short program that computes the length of the hypotenuse of

a right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit {
public static void main(String args[])
double a = 3.0, b = 4.0;

// ¢ is dynamically initialized
double ¢ = Math.sqgrt(a * a + b * b);

System.out .println ("Hypotenuse is " + c);

}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized
by constants. However, c is initialized dynamically to the length of the hypotenuse (using
the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(), which
is a member of the Math class, to compute the square root of its argument. The key point here is
that the initialization expression may use any element valid at the time of the initialization,
including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method. However,
Java allows variables to be declared within any block. As explained in Chapter 2, a block is
begun with an opening curly brace and ended by a closing curly brace. A block defines a
scope. Thus, each time you start a new block, you are creating a new scope. A scope determines
what objects are visible to other parts of your program. It also determines the lifetime of
those objects.

Many other computer languages define two general categories of scopes: global and local.
However, these traditional scopes do not fit well with Java’s strict, object-oriented model.
While it is possible to create what amounts to being a global scope, it is by far the exception,

Chapter 3: Data Types, Variables, and Arrays 43

not the rule. In Java, the two major scopes are those defined by a class and those defined by
a method. Even this distinction is somewhat artificial. However, since the class scope has
several unique properties and attributes that do not apply to the scope defined by a method,
this distinction makes some sense. Because of the differences, a discussion of class scope
(and variables declared within it) is deferred until Chapter 6, when classes are described.
For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method’s scope. Although this book
will look more closely at parameters in Chapter 6, for the sake of this discussion, they work
the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible) to
code that is defined outside that scope. Thus, when you declare a variable within a scope, you
are localizing that variable and protecting it from unauthorized access and/or modification.
Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating
a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means
that objects declared in the outer scope will be visible to code within the inner scope. However,
the reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope {
public static void main(String argsl[]) {
int x; // known to all code within main

X =
if (x) { // start new scope
0; // known only to this block

// x and y both known here.
System.out.println("x and y: " + x + " " + y);
X =y * 2;

}

// y = 100; // Error! y not known here

// x is still known here.
System.out.println("x is " + X);

}
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since a
block defines a scope, y is only visible to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol, a
compile-time error will occur, because y is not visible outside of its block. Within the if block,
x can be used because code within a block (that is, a nested scope) has access to variables
declared by an enclosing scope.

44

Part I: The Java Language

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the code
within that method. Conversely, if you declare a variable at the end of a block, it is effectively
useless, because no code will have access to it. For example, this fragment is invalid because
count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their scope is
entered, and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will not
hold their values between calls to that method. Also, a variable declared within a block will
lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized each
time the block in which it is declared is entered. For example, consider the next program.

// Demonstrate lifetime of a variable.
class LifeTime ({
public static void main(String argsl[]) {
int x;

for(x = 0; x < 3; x++) {

int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + vy); // this always prints -1
y = 100;

System.out.println("y is now: " + y);

}
}
}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is reinitialized to —1 each time the inner for loop is entered. Even though it
is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have the
same name as one in an outer scope. For example, the following program is illegal:

// This program will not compile
class ScopeErr {
public static void main(String args[])

Chapter 3: Data Types, Variables, and Arrays

int bar = 1;
{ // creates a new scope
int bar = 2; // Compile-time error - bar already defined!

}
}

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly common
to assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to
assign an int value to a long variable. However, not all types are compatible, and thus, not
all type conversions are implicitly allowed. For instance, there is no automatic conversion
defined from double to byte. Fortunately, it is still possible to obtain a conversion between
incompatible types. To do so, you must use a cast, which performs an explicit conversion
between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

¢ The two types are compatible.

¢ The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, there are no automatic conversions from the
numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a
literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion will not
be performed automatically, because a byte is smaller than an int. This kind of conversion is
sometimes called a narrowing conversion, since you are explicitly making the value narrower
so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target-type) value

45

46

Part I: The Java Language

Here, target-type specifies the desired type to convert the specified value to. For example, the
following fragment casts an int to a byte. If the integer’s value is larger than the range of a
byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;
byte b;
/...
b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As you know, integers do not have fractional components. Thus,
when a floating-point value is assigned to an integer type, the fractional component is lost.
For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.
The 0.23 will have been truncated. Of course, if the size of the whole number component is
too large to fit into the target integer type, then that value will be reduced modulo the target
type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion
public static void main(String argsl[]) {
byte b;
int i = 257;
double d = 323.142;

System.out.println ("\nConversion of int to byte.");
b = (byte) 1i;
System.out.println("i and b " + 1 + " " + Db);

System.out.println ("\nConversion of double to int.");
i = (int) d;
System.out.println("d and i " + d + " " + 1i);

System.out.println ("\nConversion of double to byte.");

b = (byte) d;
System.out.println("d and b " + d + " " + Db);

This program generates the following output:

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323

Conversion of double to byte.
d and b 323.142 67

Chapter 3: Data Types, Variables, and Arrays

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result
is the remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case.
When the d is converted to an int, its fractional component is lost. When d is converted to
a byte, its fractional component is lost, and the value is reduced modulo 256, which in this
case is 67.

Automatic Type Promotion in Expressions

In addition to assignments, there is another place where certain type conversions may occur:
in expressions. To see why, consider the following. In an expression, the precision required
of an intermediate value will sometimes exceed the range of either operand. For example,
examine the following expression:

byte a = 40;
byte b = 50;
byte ¢ = 100;
int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its byte
operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression a * b
is performed using integers—mnot bytes. Thus, 2,000, the result of the intermediate expression,
50 * 40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time errors.
For example, this seemingly correct code causes a problem:

byte b = 50;
b =Db * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte variable.
However, because the operands were automatically promoted to int when the expression was
evaluated, the result has also been promoted to int. Thus, the result of the expression is now
of type int, which cannot be assigned to a byte without the use of a cast. This is true even if,
as in this particular case, the value being assigned would still fit in the target type.

In cases where you understand the consequences of overflow, you should use an explicit
cast, such as

byte b = 50;
b = (byte) (b * 2);

which yields the correct value of 100.

The Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows: First,
all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands is double, the result is double.

48 Part I: The Java Language

The following program demonstrates how each value in the expression gets promoted
to match the second argument to each binary operator:

class Promote {
public static void main(String args[]) {
byte b = 42;
char ¢ = 'a';
short s = 1024;
int i = 50000;
float £ = 5.67f;

double d = .1234;

double result = (£ * b) + (i / ¢c) - (d * s);
System.out.println((f * b) + " + " + (1 / c) + " - " + (d * s8));
System.out .println("result = " + result);

Let’s look closely at the type promotions that occur in this line from the program:
double result = (f * b) + (1 / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i/ ¢, ¢ is promoted to int, and the result is of type int. Then,
in d * s, the value of s is promoted to double, and the type of the subexpression is double.
Finally, these three intermediate values, float, int, and double, are considered. The outcome
of float plus an int is a float. Then the resultant float minus the last double is promoted to
double, which is the type for the final result of the expression.

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an array
is accessed by its index. Arrays offer a convenient means of grouping related information.

NOTE Ifyou are familiar with C/C++, be careful. Arrays in Java work differently than they do in
those languages.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one-dimensional
array declaration is

type var-name] ;

Here, type declares the base type of the array. The base type determines the data type of each
element that comprises the array. Thus, the base type for the array determines what type of
data the array will hold. For example, the following declares an array named month_days
with the type “array of int”:

int month dayslI];

Chapter 3: Data Types, Variables, and Arrays

Although this declaration establishes the fact that month_days is an array variable, no
array actually exists. In fact, the value of month_days is set to null, which represents an array
with no value. To link month_days with an actual, physical array of integers, you must allocate
one using new and assign it to month_days. new is a special operator that allocates memory.

You will look more closely at new in a later chapter, but you need to use it now to allocate
memory for arrays. The general form of new as it applies to one-dimensional arrays appears
as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements in
the array, and array-var is the array variable that is linked to the array. That is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The elements
in the array allocated by new will automatically be initialized to zero. This example allocates
a 12-element array of integers and links them to month_days.

month days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable of
the desired array type. Second, you must allocate the memory that will hold the array, using
new, and assign it to the array variable. Thus, in Java all arrays are dynamically allocated. If
the concept of dynamic allocation is unfamiliar to you, don’t worry. It will be described at
length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days.

month days[1] = 28;
The next line displays the value stored at index 3.
System.out.println(month days[3]);

Putting together all the pieces, here is a program that creates an array of the number
of days in each month.

// Demonstrate a one-dimensional array.
class Array {
public static void main(String argsl[]) {
int month dayslI];
month days = new int[12];
month days[0] = 31;
month days[1] = 28;
month days[2] = 31;
month days[3] = 30;
month days[4] = 31;
month days[5] = 30;
month days[6] = 31;

49

50

Part I: The Java Language

month_days[7] = 31;
month days[8] = 30;
month days[9] = 31;

month days[10] = 30;
month days[11] = 31;
System.out.println("April has " + month days[3] + " days.");

}
}

When you run this program, it prints the number of days in April. As mentioned, Java array
indexes start with zero, so the number of days in April is month_days|[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the
array itself, as shown here:

int month days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.

Arrays can be initialized when they are declared. The process is much the same as that
used to initialize the simple types. An array initializer is a list of comma-separated expressions
surrounded by curly braces. The commas separate the values of the array elements. The array
will automatically be created large enough to hold the number of elements you specify in the
array initializer. There is no need to use new. For example, to store the number of days in
each month, the following code creates an initialized array of integers:

// An improved version of the previous program.
class AutoArray {
public static void main(String argsl[]) {

int month daysl[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 };
System.out.println("April has " + month days[3] + " days.");

}
}

When you run this program, you see the same output as that generated by the previous version.

Java strictly checks to make sure you do not accidentally try to store or reference values
outside of the range of the array. The Java run-time system will check to be sure that all array
indexes are in the correct range. For example, the run-time system will check the value of
each index into month_days to make sure that it is between 0 and 11 inclusive. If you try to
access elements outside the range of the array (negative numbers or numbers greater than
the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a set
of numbers.

// Average an array of values.
class Average {
public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int i;

Chapter 3: Data Types, Variables, and Arrays

for (i=0; 1i<5; i++)
result = result + nums[i];

System.out.println("Average is " + result / 5);

}
}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look
and act like regular multidimensional arrays. However, as you will see, there are a couple
of subtle differences. To declare a multidimensional array variable, specify each additional
index using another set of square brackets. For example, the following declares a two-
dimensional array variable called twoD.

int twoD[] [] = new int [4] [5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as
an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String argsl[]) {
int twoD[] [1= new int [4] [5];
int i, j, k = 0;

for (i=0; i<4; i++)
for(j=0; j<5; j++) {
twoD [1] [§] = k;
k++;

}

for(i=0; i<4; i++) {
for(j=0; j<5; j++)
System.out.print (twoD[i] [§] + " ");
System.out .println() ;

}
}
}

This program generates the following output:

01234
56 789
10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions

o1

52

Part I: The Java Language

Right index determines column.

T T T

[o] o] | o]0 |[e]2]| (o] (=] | o] L4]

Left index (o] | 0| (2] | [(]| [s

determines
TOwW.

[2]0e] | (20| [2][2]| 2] (e] | (2] 4]

(3] (10| [s][2]| (=1 0e] | (=] L4]

Given: inttwoD [] [] = new int [4] [5];

FIGURE 3-1 A conceptual view of a 4 by 5, two-dimensional array

separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[] [] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays in
this situation, there may be in others. For example, when you allocate dimensions manually,
you do not need to allocate the same number of elements for each dimension. As stated earlier,
since multidimensional arrays are actually arrays of arrays, the length of each array is under
your control. For example, the following program creates a two-dimensional array in which
the sizes of the second dimension are unequal.

// Manually allocate differing size second dimensions.
class TwoDAgain {
public static void main(String args[]) {

int twoD[] [] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD [2] = new int[3];
twoD[3] = new int[4];

int i, j, k = 0;

for (i=0; i<4; i++)
for(j=0; j<i+1; F++) {

Chapter 3:

twoD [1] [§J] = k;
k++;

}

for (i=0; i<4; i++) {
for(j=0; Jj<i+l; J++)

System.out.print (twoD[1i] []]

System.out.println() ;

}
}
}

This program generates the following output:

O W K O
<N N

5
8 9

+ o

Data Types, Variables, and Arrays

")

The array created by this program looks like this:

[o][o]

[1][e]

EN[EY

[2]o]

(][]

[2][2]

[3][0]

EX[EY

[s][2]

EX[EY

The use of uneven (or, irregular) multidimensional arrays may not be appropriate for many
applications, because it runs contrary to what people expect to find when a multidimensional
array is encountered. However, irregular arrays can be used effectively in some situations. For
example, if you need a very large two-dimensional array that is sparsely populated (that is,
one in which not all of the elements will be used), then an irregular array might be a perfect

solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each dimension’s
initializer within its own set of curly braces. The following program creates a matrix where
each element contains the product of the row and column indexes. Also notice that you can
use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.

class Matrix {

public static void main(String argsl[]) {

double m[][] = {
{ o*o0, 1*0, 2*0, 3%0 },
{ o*1, 1*1, 2%1, 3*%1 },
{ o*2, 1*2, 2+%2, 3%2 },

53

54

Part I: The Java Language

{ 0%*3, 1*3, 2+%3, 3%*3 }

}i

int i, 5;

for(i=0; i<4; i++) {
for(§=0; j<4; j++)
System.out.print (m[i] [§] + " ");
System.out.println() ;

}
}
}

When you run this program, you will get the following output:

.0

o O O O
w N B O
o O O O
o N O
o O O O
O o W o
o O O O

0
.0
0

As you can see, each row in the array is initialized as specified in the initialization lists.

Let’s look at one more example that uses a multidimensional array. The following program
creates a 3 by 4 by 5, three-dimensional array. It then loads each element with the product
of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class ThreeDMatrix {
public static void main(String argsl[]) {
int threeD[] []1[] = new int[3] [4] [5];
int i, j, k;

for (i=0; 1<3; 1i++)
for(§=0; j<4; j++)
for (k=0; k<5; k++)
threeD[i] [J]1[k] =1 * j * k;

for(i=0; i<3; i++)
for (§=0; j<4; j++) {
for (k=0; k<5; k++)
System.out.print (threeD[1] [j] [k] + " ");
System.out.println() ;
1
System.out.println() ;
}
1
}

This program generates the following output:

000O0O
000O0O
000O0O
000O0O

Chapter 3: Data Types, Variables, and Arrays 55

o O O O
w N P O
o B N O
o o0 W O
o

12

00O

4 6 8

8 12 16
12 18 24

o O O O
o N O

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

typel | var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable.
For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 new int [3];

The following declarations are also equivalent:

char twodl[] [] = new char([3] [4];
char[] [] twod2 = new char([3] [4];

This alternative declaration form offers convenience when declaring several arrays at the
same time. For example,

int [] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for
a method. Both forms are used in this book.

A Few Words About Strings

As you may have noticed, in the preceding discussion of data types and arrays there has been
no mention of strings or a string data type. This is not because Java does not support such a
type—it does. It is just that Java’s string type, called String, is not a simple type. Nor is it simply
an array of characters. Rather, String defines an object, and a full description of it requires an
understanding of several object-related features. As such, it will be covered later in this book,
after objects are described. However, so that you can use simple strings in example programs,
the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings.
A quoted string constant can be assigned to a String variable. A variable of type String can

56

Part I: The Java Language

be assigned to another variable of type String. You can use an object of type String as an
argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str) ;

Here, str is an object of type String. It is assigned the string “this is a test”. This string is
displayed by the println() statement.

As you will see later, String objects have many special features and attributes that
make them quite powerful and easy to use. However, for the next few chapters, you will
be using them only in their simplest form.

A Note to C/C++ Programmers About Pointers

If you are an experienced C/C++ programmer, then you know that these languages provide
support for pointers. However, no mention of pointers has been made in this chapter. The
reason for this is simple: Java does not support or allow pointers. (Or more properly, Java
does not support pointers that can be accessed and/or modified by the programmer.) Java
cannot allow pointers, because doing so would allow Java programs to breach the firewall
between the Java execution environment and the host computer. (Remember, a pointer can
be given any address in memory—even addresses that might be outside the Java run-time
system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss
is a significant disadvantage to Java. However, this is not true. Java is designed in such a way
that as long as you stay within the confines of the execution environment, you will never need
to use a pointer, nor would there be any benefit in using one.

CHAPTER
Operators

ava provides a rich operator environment. Most of its operators can be divided into the

following four groups: arithmetic, bitwise, relational, and logical. Java also defines some

additional operators that handle certain special situations. This chapter describes all
of Java’s operators except for the type comparison operator instanceof, which is examined
in Chapter 13.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

- Subtraction (also unary minus)
* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

—= Subtraction assignment
*= Multiplication assignment
/= Division assignment

%= Modulus assignment

-— Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use
them on boolean types, but you can use them on char types, since the char type in Java is,
essentially, a subset of int.

37

58

Part I: The Java Language

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and division— all
behave as you would expect for all numeric types. The minus operator also has a unary form
that negates its single operand. Remember that when the division operator is applied to an
integer type, there will be no fractional component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also
illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath {
public static void main(String argsl[]) {
// arithmetic using integers
System.out .println("Integer Arithmetic");

int
int
int
int
int

a =1

b
c
d
e

System.
System.
System.
System.
System.

.println("a
.println("b
.println("c
.println("d
.println("e

+ o+ o+ o+ o+
D Q0o

// arithmetic using doubles

System.out.println("\nFloating Point Arithmetic");
double da = 1 + 1;

double db = da * 3;

double dc = db / 4;

double dd = dc - a;

double de = -dd;
System.out.println("da "+ da);
System.out.println ("db " + db);
System.out.println ("dc "+ dc);
System.out .println ("dd "+ dd);
System.out.println("de "+ de);

}
}

When you run this program, you will see the following output:

Integer Arithmetic

O Q0 09w
|
i

Floating Point Arithmetic
da = 2.0
db = 6.0

Chapter 4: Operators

dc = 1.5
dd = -0.5
de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be applied to
floating-point types as well as integer types. The following example program demonstrates
the %:

// Demonstrate the % operator.
class Modulus ({
public static void main(String argsl[]) {
int x = 42;
double y = 42.25;

System.out.println("x mod 10 = " + x
System.out.println("y mod 10 = " + y %

}
}

When you run this program, you will get the following output:

x mod 10 = 2
y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with
an assignment. As you probably know, statements like the following are quite common in
programming:

This version uses the += compound assignment operator. Both statements perform the same
action: they increase the value of a by 4.
Here is another example,

In this case, the %= obtains the remainder of a/2 and puts that result back into a.
There are compound assignment operators for all of the arithmetic, binary operators.
Thus, any statement of the form

var = var op expression;

59

60

Part I: The Java Language

can be rewritten as
var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit of
typing, because they are “shorthand” for their equivalent long forms. Second, they are
implemented more efficiently by the Java run-time system than are their equivalent long
forms. For these reasons, you will often see the compound assignment operators used in
professionally written Java programs.

Here is a sample program that shows several op= assignments in action:

// Demonstrate several assignment operators.
class OpEquals {
public static void main(String argsl[]) {
int a = 1;
int b = 2;
int ¢ = 3;

a += 5;

b *= 4;

c += a * b;

c %= 6;

System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

}
}

The output of this program is shown here:

a =6
b =28
c =3

Increment and Decrement

The ++ and the — - are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some special
properties that make them quite interesting. Let’s begin by reviewing precisely what the
increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator decreases
its operand by one. For example, this statement:

X =X + 1;
can be rewritten like this by use of the increment operator:
X4+ ;

Similarly, this statement:

Chapter 4: Operators

is equivalent to
x--;

These operators are unique in that they can appear both in postfix form, where they
follow the operand as just shown, and prefix form, where they precede the operand. In the
foregoing examples, there is no difference between the prefix and postfix forms. However,
when the increment and/or decrement operators are part of a larger expression, then a
subtle, yet powerful, difference between these two forms appears. In the prefix form, the
operand is incremented or decremented before the value is obtained for use in the expression.
In postfix form, the previous value is obtained for use in the expression, and then the operand
is modified. For example:

X = 42;
Y = ++X;

In this case, y is set to 43 as you would expect, because the increment occurs before x is assigned
to y. Thus, the line y = ++x; is the equivalent of these two statements:

X =X + 1;
Yy = X;

However, when written like this,

X = 42;
Y = X++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.
Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two
statements:

Yy = Xj
X X + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec {
public static void main(String argsl[]) {
int = 1;
int = 2;
int c;
int d;

o o

System.out .println ("
System.out .println ("
System.out.println ("
System.out .println ("

a
b =
C
a

I
+ o+ o+ o+
Qaaq o

61

62

The

Part I: The Java Language

The output of this program follows:

Q0 oW
I
oW N

Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int, short,
char, and byte. These operators act upon the individual bits of their operands. They are
summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

A Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

I= Bitwise OR assignment

A= Bitwise exclusive OR assignment
>>= Shift right assignment

>>>= Shift right zero fill assignment
<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer, it is important to
understand what effects such manipulations may have on a value. Specifically, it is useful
to know how Java stores integer values and how it represents negative numbers. So, before
continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For
example, the byte value for 42 in binary is 00101010, where each position represents a power
of two, starting with 2°at the rightmost bit. The next bit position to the left would be 2', or 2,
continuing toward the left with 2? or4, then 8, 16, 32, and so on. So 42 has 1 bits set at positions
1,3, and 5 (counting from 0 at the right); thus, 42 is the sum of 2 + 2’ + 2°, which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can represent
negative values as well as positive ones. Java uses an encoding known as two’s complement,
which means that negative numbers are represented by inverting (changing 1’s to 0’s and
vice versa) all of the bits in a value, then adding 1 to the result. For example, —42 is represented
by inverting all of the bits in 42, or 00101010, which yields 11010101, then adding 1, which
results in 11010110, or —42. To decode a negative number, first invert all of the bits, then add 1.
For example, 42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42.

Chapter 4: Operators 63

The reason Java (and most other computer languages) uses two’s complement is easy to
see when you consider the issue of zero crossing. Assuming a byte value, zero is represented by
00000000. In one’s complement, simply inverting all of the bits creates 11111111, which creates
negative zero. The trouble is that negative zero is invalid in integer math. This problem is solved
by using two’s complement to represent negative values. When using two’s complement, 1 is
added to the complement, producing 100000000. This produces a 1 bit too far to the left to
fit back into the byte value, resulting in the desired behavior, where —0 is the same as 0, and
11111111 is the encoding for —1. Although we used a byte value in the preceding example,
the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not.
To avoid unpleasant surprises, just remember that the high-order bit determines the sign
of an integer no matter how that high-order bit gets set.

The Bitwise Logical Operators

The bitwise logical operators are &, |, /A, and ~. The following table shows the outcome of
each operation. In the discussion that follows, keep in mind that the bitwise operators are
applied to each individual bit within each operand.

A B AlB A&B ANB ~A
0 0] 0 0] 0] 1
1 0 1 0 1 0
0] 1 1 0] 1 1
1 1 1 1 0 0

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example, the number 42, which has the following bit pattern:

00101010
becomes
11010101
after the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all
other cases. Here is an example:

00101010 42
& 00001111 15

00001010 10

Part I: The Java Language

The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42
| 00001111 15

00101111 47

The Bitwise XOR

The XOR operator, A, combines bits such that if exactly one operand is 1, then the result is 1.
Otherwise, the result is zero. The following example shows the effect of the ~. This example
also demonstrates a useful attribute of the XOR operation. Notice how the bit pattern of 42
is inverted wherever the second operand has a 1 bit. Wherever the second operand has a 0 bit,
the first operand is unchanged. You will find this property useful when performing some
types of bit manipulations.

00101010 42
A 00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic f{
public static void main(String argsl[]) {

String binaryl[] = {
*oooo", "wooow$€t", "o0O1€0", "OO11"™, "O1lO0O", "O101", "O1l1O0", "O111",
||1000||, "1001", "1010", "1011", "llOO", "1101", ||1110||, llllll"
}i
int a = 3; // 0 + 2 + 1 or 0011 in binary
int b = 6; // 4 + 2 + 0 or 0110 in binary
int ¢ = a | b;
int d = a & b;
int e = a * b;
int £ = (~a & b) | (a & ~b);
int g = ~a & 0x0f;
System.out.println (" a = " + binarylal);
System.out .println (" b =" + binaryl[bl);
System.out .println (" alb = " + binarylc]);
System.out.println (" a&b = " + binaryl[d]);
System.out.println (" a’b = " + binarylel);
System.out.println("~a&b|a&~b = " + binaryl[f]);
System.out .println (" ~a = " + binarylgl);

Chapter 4: Operators

In this example, a and b have bit patterns that present all four possibilities for two
binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the
results in ¢ and d. The values assigned to e and f are the same and illustrate how the » works.
The string array named binary holds the human-readable, binary representation of the numbers
0 through 15. In this example, the array is indexed to show the binary representation of each
result. The array is constructed such that the correct string representation of a binary value
n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in binary) in order
to reduce its value to less than 16, so it can be printed by use of the binary array. Here is the
output from this program:

a = 0011

b = 0110

alb = 0111

agb = 0010

a®b = 0101
~a&b|a&~b = 0101
~a = 1100

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.
It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<
moves all of the bits in the specified value to the left by the number of bit positions specified
by num. For each shift left, the high-order bit is shifted out (and lost), and a zero is brought
in on the right. This means that when a left shift is applied to an int operand, bits are lost
once they are shifted past bit position 31. If the operand is a long, then bits are lost after bit
position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when an
expression is evaluated. Furthermore, the result of such an expression is also an int. This
means that the outcome of a left shift on a byte or short value will be an int, and the bits
shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte
or short value will be sign-extended when it is promoted to int. Thus, the high-order bits
will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies
that you must discard the high-order bytes of the int result. For example, if you left-shift
a byte value, that value will first be promoted to int and then shifted. This means that you
must discard the top three bytes of the result if what you want is the result of a shifted byte
value. The easiest way to do this is to simply cast the result back into a byte. The following
program demonstrates this concept:

// Left shifting a byte value.
class ByteShift ({
public static void main(String argsl[]) {
byte a = 64, b;
int i;

65

66

Part I: The Java Language

i =a << 2;

b = (byte) (a << 2);
System.out.println("Original value of a: " + a);
System.out.println("i and b: " + 1 + " " + Db);

}
}

The output generated by this program is shown here:

Original value of a: 64
i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has
been shifted out.

Since each left shift has the effect of doubling the original value, programmers frequently
use this fact as an efficient alternative to multiplying by 2. But you need to watch out. If you
shift a 1 bit into the high-order position (bit 31 or 63), the value will become negative. The
following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
public static void main(String argsl([]) {
int 1i;
int num = OxXFFFFFFE;

for(i=0; i<4; i++) {
num = num << 1;
System.out.println (num) ;

}
}
}

The program generates the following output:

536870908
1073741816
2147483632
-32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it
would produce —-32. As you can see, when a 1 bit is shifted into bit 31, the number is interpreted
as negative.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of
times. Its general form is shown here:

value >> num

Chapter 4: Operators

Here, num specifies the number of positions to right-shift the value in value. That is, the >>
moves all of the bits in the specified value to the right the number of bit positions specified
by num.

The following code fragment shifts the value 32 to the right by two positions, resulting
in a being set to 8:

int a = 32;
a =a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next
code fragment shifts the value 35 to the right two positions, which causes the two low-order
bits to be lost, resulting again in a being set to 8.

int a = 35;
a =a > 2; // a still contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>>2
00001000 8

Each time you shift a value to the right, it divides that value by two—and discards any
remainder. You can take advantage of this for high-performance integer division by 2. Of
course, you must be sure that you are not shifting any bits off the right end.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled in
with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when you shift them right. For example, -8 >> 1 is -4, which,
in binary, is

11111000 -8
>>1
11111100 -4

It is interesting to note that if you shift -1 right, the result always remains 1, since sign
extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the
right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of hexadecimal
characters.

// Masking sign extension.
class HexByte ({
static public void main(String args[]) ({
char hex[] = {
IOI, |1l, |2l’ |3|’ |4I, l5|, |6|, I7|,
I8'l '9'1 ‘a'l lbl’ lcll ldl, le|, lfl

Vi

67

68

Part I: The Java Language

byte b = (byte) O0xfl;

System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

}
}

Here is the output of this program:

b = 0xfl

The Unsigned Right Shift

As you have just seen, the >> operator automatically fills the high-order bit with its previous
contents each time a shift occurs. This preserves the sign of the value. However, sometimes
this is undesirable. For example, if you are shifting something that does not represent a numeric
value, you may not want sign extension to take place. This situation is common when you
are working with pixel-based values and graphics. In these cases, you will generally want to
shift a zero into the high-order bit no matter what its initial value was. This is known as an
unsigned shift. To accomplish this, you will use Java’s unsigned, shift-right operator, >>>,
which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to -1, which sets all
32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros,
ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening;:

11111111 11111111 11111111 11111111 -1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in
expressions. This means that sign-extension occurs and that the shift will take place on a
32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift
on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value
that is actually being shifted. The following program demonstrates this effect:

// Unsigned shifting a byte value.
class ByteUShift (
static public void main(String args[]) {
char hex[] = {

‘o', '1v, r'2', '3', r4r, 5, g, 17,
I8'I l9ll ‘a'l lbl, 'CI, 'dl, lel’ Ifl
}i
byte b = (byte) O0xf1l;
byte ¢ = (byte) (b >> 4);
byte d = (byte) (b >>> 4);
byte e = (byte) ((b & O0xff) >> 4);

Chapter 4: Operators

System.out .println (" b = ox"
+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
System.out.println (" b >> 4 = 0x"
+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);
System.out.println (" b >>> 4 = 0x"

+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);
System.out.println(" (b & 0xff) >> 4 = 0x"
+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

The following output of this program shows how the >>> operator appears to do nothing
when dealing with bytes. The variable b is set to an arbitrary negative byte value for this
demonstration. Then c is assigned the byte value of b shifted right by four, which is Oxff
because of the expected sign extension. Then d is assigned the byte value of b unsigned
shifted right by four, which you might have expected to be 0x0f, but is actually Oxff because
of the sign extension that happened when b was promoted to int before the shift. The last
expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted
right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right
operator was not used for d, since the state of the sign bit after the AND was known.

b = 0xf1l

b >> 4 = 0xff

b >>> 4 = 0xff

(b & Oxff) >> 4 0x0f

Bitwise Operator Compound Assignments

All of the binary bitwise operators have a compound form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a =a >> 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise
expression a OR b, are equivalent:

= a | b;

| b;

The following program creates a few integer variables and then uses compound bitwise
operator assignments to manipulate the variables:

class OpBitEquals {
public static void main(String argsl[]) {
int a = 1;
int b = 2;
int ¢ = 3;

69

10

Part I: The Java Language

c <<= 1;
a *= c;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c¢);

}
}

The output of this program is shown here:

a =3
b =1
c =6

Relational Operators

The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

1= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most
frequently used in the expressions that control the if statement and the various loop statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java
equality is denoted with two equal signs, not one. (Remember: a single equal sign is the
assignment operator.) Only numeric types can be compared using the ordering operators.
That is, only integer, floating-point, and character operands may be compared to see which
is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example,
the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean ¢ = a < b;

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++, these
types of statements are very common:

Chapter 4: Operators
int done;
//
if (!done) // Valid in C/C++
if (done) // but not in Java.

In Java, these statements must be written like this:

if (done == 0)
if (done != 0)

. // This is Java-style.

The reason is that Java does not define true and false in the same way as C/C++. In C/C++,
true is any nonzero value and false is zero. In Java, true and false are nonnumeric values that
do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you must explicitly
employ one or more of the relational operators.

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All of the
binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR

A Logical XOR (exclusive OR)
Il Short-circuit OR
&& Short-circuit AND

! Logical unary NOT
&= AND assignment
= OR assignment

A= XOR assignment
== Equal to

1= Not equal to

?: Ternary ifthen-else

The logical Boolean operators, &, |, and ?, operate on boolean values in the same way
that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:
ltrue == false and !false == true. The following table shows the effect of each logical operation:

A B AlB A&B AAB A
False False False False False True
True False True False True False
False True True False True True
True True True True False False

11

12

Part I: The Java Language

Here is a program that is almost the same as the BitLogic example shown earlier, but it
operates on boolean logical values instead of binary bits:

// Demonstrate the boolean logical operators.
class BoolLogic ({
public static void main(String argsl[]) {

boolean a = true;

boolean b = false;

boolean ¢ = a | b;

boolean d = a & b;

boolean e = a * b;

boolean f = (la & b) | (a & !b);
boolean g = !a;

System.out .println (" a ="+ a);
System.out .println (" b="+Db);
System.out.println (" alb = " + ¢);
System.out .println (" agb = " + d);
System.out.println (" a’b = " + e);
System.out.println("!a&b|a&!b = " + f);
System.out .println (" la =" + g);

After running this program, you will see that the same logical rules apply to boolean
values as they did to bits. As you can see from the following output, the string representation
of a Java boolean value is one of the literal values true or false:

a true

b = false

alb = true

a&b = false

a’b = true
a&b|a&!b = true
la = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in many other computer languages.
These are secondary versions of the Boolean AND and OR operators, and are known as
short-circuit logical operators. As you can see from the preceding table, the OR operator
results in true when A is true, no matter what B is. Similarly, the AND operator results in
false when A is false, no matter what B is. If you use the | | and && forms, rather than the
| and & forms of these operators, Java will not bother to evaluate the right-hand operand
when the outcome of the expression can be determined by the left operand alone. This is
very useful when the right-hand operand depends on the value of the left one in order
to function properly. For example, the following code fragment shows how you can take
advantage of short-circuit logical evaluation to be sure that a division operation will be valid
before evaluating it:

if (denom != 0 && num / denom > 10)

Chapter 4: Operators

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time
exception when denom is zero. If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-time exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases involving
Boolean logic, leaving the single-character versions exclusively for bitwise operations. However,
there are exceptions to this rule. For example, consider the following statement:

if (c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether ¢
is equal to 1 or not.

The Assignment Operator

You have been using the assignment operator since Chapter 2. Now it is time to take a formal
look at it. The assignment operator is the single equal sign, =. The assignment operator works in
Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.
The assignment operator does have one interesting attribute that you may not be familiar
with: it allows you to create a chain of assignments. For example, consider this fragment:

int x, vy, z;
x =y =z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a
“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-else
statements. This operator is the ?. It can seem somewhat confusing at first, but the ? can be
used very effectively once mastered. The ? has this general form:

expressionl ? expression2 : expression3

Here, expressionl can be any expression that evaluates to a boolean value. If expression1 is
true, then expression? is evaluated; otherwise, expression3 is evaluated. The result of the ?
operation is that of the expression evaluated. Both expression2 and expression3 are required
to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

4

Part I: The Java Language

When Java evaluates this assignment expression, it first looks at the expression to the left of
the question mark. If denom equals zero, then the expression between the question mark and
the colon is evaluated and used as the value of the entire ? expression. If denom does not
equal zero, then the expression after the colon is evaluated and used for the value of the
entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate 2.
class Ternary f{
public static void main(String args[]) {

int i, k;
i = 10;
k=1<0? -1 : 1i; // get absolute value of i

System.out.print ("Absolute value of ");
System.out.println(i + " is " + k);

i = -10;
k=1<07? -1 : i; // get absolute value of i
System.out.print ("Absolute value of ");
System.out.println(i + " is " + k);

}

The output generated by the program is shown here:

Absolute value of 10 is 10
Absolute value of -10 is 10

Operator Precedence

Table 4-1 shows the order of precedence for Java operators, from highest to lowest. Notice
that the first row shows items that you may not normally think of as operators: parentheses,
square brackets, and the dot operator. Technically, these are called separators, but they act
like operators in an expression. Parentheses are used to alter the precedence of an operation.
As you know from the previous chapter, the square brackets provide array indexing. The dot
operator is used to dereference objects and will be discussed later in this book.

Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often necessary
to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression
can be rewritten using redundant parentheses like this:

a >> (b + 3)

Chapter 4: Operators

TABLE 4-1

The Precedence of Highest
the Java Operators |() []
++ -— ~ !
* / %
+ _
>> >>> <<
> >= < <=
== 1=
&
A
|
&&
Il
?:
= op=
Lowest

However, if you want to first shift a right by b positions and then add 3 to that result,
you will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can sometimes
be used to help clarify the meaning of an expression. For anyone reading your code, a
complicated expression can be difficult to understand. Adding redundant but clarifying
parentheses to complex expressions can help prevent confusion later. For example, which of
the following expressions is easier to read?

a| 4+c>bsa?7
(a | (((4 +¢c) >>b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance of
your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

15

This page intentionally left blank

CHAPTER
Control Statements

advance and branch based on changes to the state of a program. Java’s program

control statements can be put into the following categories: selection, iteration, and
jump. Selection statements allow your program to choose different paths of execution based
upon the outcome of an expression or the state of a variable. Iteration statements enable
program execution to repeat one or more statements (that is, iteration statements form
loops). Jump statements allow your program to execute in a nonlinear fashion. All of Java’s
control statements are examined here.

ﬁ programming language uses control statements to cause the flow of execution to

Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control the
flow of your program’s execution based upon conditions known only during run time. You will
be pleasantly surprised by the power and flexibility contained in these two statements.

if
The if statement was introduced in Chapter 2. It is examined in detail here. The if statement

is Java’s conditional branch statement. It can be used to route program execution through
two different paths. Here is the general form of the if statement:

if (condition) statementl;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a boolean value. The else
clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise,

statement? (if it exists) is executed. In no case will both statements be executed. For example,
consider the following;:

int a, b;

/...

if(a < b) a = 0;
else b = 0;

11

18

Part I: The Java Language

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they
both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single
boolean variable, as shown in this code fragment:

boolean dataAvailable;

// ...

if (dataAvailable)
ProcessData () ;

else
wailtForMoreData () ;

Remember, only one statement can appear directly after the if or the else. If you want
to include more statements, you'll need to create a block, as in this fragment:

int bytesAvailable;

// ...

if (bytesAvailable > 0) {
ProcessData () ;
bytesAvailable -= n;

} else
waitForMoreData () ;

Here, both statements within the if block will execute if bytesAvailable is greater than zero.

Some programmers find it convenient to include the curly braces when using the if,
even when there is only one statement in each clause. This makes it easy to add another
statement at a later date, and you don’t have to worry about forgetting the braces. In fact,
forgetting to define a block when one is needed is a common cause of errors. For example,
consider the following code fragment:

int bytesAvailable;

/] ...

if (bytesAvailable > 0) {
ProcessData () ;
bytesAvailable -= n;

} else
waitForMoreData () ;
bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside
the else clause, because of the indentation level. However, as you recall, whitespace is
insignificant to Java, and there is no way for the compiler to know what was intended. This
code will compile without complaint, but it will behave incorrectly when run. The preceding
example is fixed in the code that follows:

int bytesAvailable;
!/

Chapter 5: Control Statements

if (bytesAvailable > 0) {
ProcessData () ;
bytesAvailable -= n;

} else {
wailtForMoreData () ;
bytesAvailable = n;

}

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very common
in programming. When you nest ifs, the main thing to remember is that an else statement
always refers to the nearest if statement that is within the same block as the else and that is
not already associated with an else. Here is an example:

if (i == 10) {
if(j < 20) a = b;
if(k > 100) ¢ = d; // this if is
else a = c; // associated with this else
}
else a = d; // this else refers to if (i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else
is associated with if(i==10). The inner else refers to if(k>100) because it is the closest if
within the same block.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the
if-else-if ladder. It looks like this:

if(condition)
statement,

else if(condition)
statement;

else if(condition)
statement;

else
statement;

The if statements are executed from the top down. As soon as one of the conditions controlling
the if is true, the statement associated with that if is executed, and the rest of the ladder is
bypassed. If none of the conditions is true, then the final else statement will be executed.
The final else acts as a default condition; that is, if all other conditional tests fail, then the

19

80

Part I: The Java Language

last else statement is performed. If there is no final else and all other conditions are false,
then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.
class IfElse {
public static void main(String argsl([]) {
int month = 4; // April
String season;

if (month == 12 || month == || month == 2)
season = "Winter";

else if (month == || month == || month == 5)
season = "Spring";

else if (month == || month == || month == 8)
season = "Summer";

else if (month == || month == 10 || month == 11)
season = "Autumn";

else
season = "Bogus Month";

System.out.println ("April is in the " + season + ".");

}
}

Here is the output produced by the program:
April is in the Spring.

You might want to experiment with this program before moving on. As you will find,
no matter what value you give month, one and only one assignment statement within the
ladder will be executed.

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch
execution to different parts of your code based on the value of an expression. As such, it often
provides a better alternative than a large series of if-else-if statements. Here is the general form
of a switch statement:

switch (expression) {
case valuel:
// statement sequence
break;
case value2:
// statement sequence
break;

case valueN:

Chapter 5: Control Statements

// statement sequence
break;
default:
// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the
case statements must be of a type compatible with the expression. (An enumeration value can
also be used to control a switch statement. Enumerations are described in Chapter 12.) Each
case value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case
values are not allowed.

The switch statement works like this: The value of the expression is compared with each
of the literal values in the case statements. If a match is found, the code sequence following
that case statement is executed. If none of the constants matches the value of the expression,
then the default statement is executed. However, the default statement is optional. If no case
matches and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When
a break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A simple example of the switch.
class SampleSwitch {
public static void main(String argsl[]) {
for(int i=0; 1i<6; 1i++)
switch(i) {
case 0:
System.out.println("i is zero.");
break;
case 1:
System.out.println("i is one.");
break;
case 2:
System.out.println("i is two.");
break;
case 3:
System.out.println("i is three.");
break;
default:
System.out.println("i is greater than 3.");

}
}

The output produced by this program is shown here:

is zero.

is one.

is two.

is three.

is greater than 3.
is greater than 3.

I e

81

82

Part I:

The Java Language

As you can see, each time through the loop, the statements associated with the case constant
that matches i are executed. All others are bypassed. After i is greater than 3, no case statements
match, so the default statement is executed.

The break statement is optional. If you omit the break, execution will continue on into the

next case.

It is sometimes desirable to have multiple cases without break statements between

them. For example, consider the following program:

// In a

switch, break statements are optional.

class MissingBreak {
public static void main(String argsl[]) {
for (int 1=0; 1<12; i++)
switch(i) {

}
}

case 0:

case 1:

case 2:

case 3:

case 4:
System.out.println("i is less than 5");
break;

case 5:

case 6:

case 7:

case 8:

case 9:
System.out.println("i is less than 10");
break;

default:
System.out.println("i is 10 or more");

This program generates the following output:

is
is
is
is
is
is
is
is
is
is
is
is

I S s o e T SO S S

less than
less than
less than
less than
less than 5
less than 10
less than 10
less than 10
less than 10
less than 10
10 or more

10 or more

[S2BNC2) BNV

As you can see, execution falls through each case until a break statement (or the end of the
switch) is reached.

Chapter 5: Control Statements

While the preceding example is, of course, contrived for the sake of illustration, omitting the
break statement has many practical applications in real programs. To sample its more realistic
usage, consider the following rewrite of the season example shown earlier. This version uses a
switch to provide a more efficient implementation.

// An improved version of the season program.
class Switch {
public static void main(String argsl[]) {
int month = 4;
String season;
switch (month) ({
case 12:
case 1:
case 2:
season = "Winter";
break;
case 3:
case 4:
case 5:
season = "Spring";
break;
case 6:
case 7:
case 8:
season = "Summer";
break;
case 9:
case 10:
case 11:
season
break;
default:
season = "Bogus Month";

"Autumn";

}

System.out .println ("April is in the " + season + ".");

}

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between the
case constants in the inner switch and those in the outer switch. For example, the following
fragment is perfectly valid:

switch(count)
case 1:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;

83

84

Part I: The Java Language

case 1: // no conflicts with outer switch
System.out.println("target is one");
break;

}

break;
case 2: //

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement in
the outer switch. The count variable is only compared with the list of cases at the outer level.
If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

¢ The switch differs from the if in that switch can only test for equality, whereas if
can evaluate any type of Boolean expression. That is, the switch looks only for a
match between the value of the expression and one of its case constants.

e No two case constants in the same switch can have identical values. Of course, a
switch statement and an enclosing outer switch can have case constants in common.

* A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler
works. When it compiles a switch statement, the Java compiler will inspect each of the case
constants and create a “jump table” that it will use for selecting the path of execution depending
on the value of the expression. Therefore, if you need to select among a large group of values,

a switch statement will run much faster than the equivalent logic coded using a sequence of
if-elses. The compiler can do this because it knows that the case constants are all the same type
and simply must be compared for equality with the switch expression. The compiler has no
such knowledge of a long list of if expressions.

Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block
while its controlling expression is true. Here is its general form:

while(condition) {
// body of loop
}

The condition can be any Boolean expression. The body of the loop will be executed as long
as the conditional expression is true. When condition becomes false, control passes to the
next line of code immediately following the loop. The curly braces are unnecessary if only
a single statement is being repeated.

Chapter 5: Control Statements

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”:

// Demonstrate the while loop.
class While {
public static void main(String argsl[]) {
int n = 10;

while(n > 0) {
System.out.println("tick " + n);
n--;
}
}
}

When you run this program, it will “tick” ten times:

tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

o

RN W 1oy 0 0

Since the while loop evaluates its conditional expression at the top of the loop, the body
of the loop will not execute even once if the condition is false to begin with. For example, in
the following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
System.out.println("This will not be displayed") ;

The body of the while (or any other of Java’s loops) can be empty. This is because a null
statement (one that consists only of a semicolon) is syntactically valid in Java. For example,
consider the following program:

// The target of a loop can be empty.
class NoBody {
public static void main(String args[]) {

int i, j;
= 100;
j = 200;

// find midpoint between i and j
while(++i < --j) ; // no body in this loop

85

86

Part I: The Java Language

System.out .println("Midpoint is " + 1i);
}
}

This program finds the midpoint between i and j. It generates the following output:
Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of j is
decremented. These values are then compared with one another. If the new value of i is still
less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop
stops. Upon exit from the loop, i will hold a value that is midway between the original values
of i and j. (Of course, this procedure only works when i is less than j to begin with.) As you
can see, there is no need for a loop body; all of the action occurs within the conditional
expression, itself. In professionally written Java code, short loops are frequently coded
without bodies when the controlling expression can handle all of the details itself.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false,
then the body of the loop will not be executed at all. However, sometimes it is desirable
to execute the body of a loop at least once, even if the conditional expression is false to
begin with. In other words, there are times when you would like to test the termination
expression at the end of the loop rather than at the beginning. Fortunately, Java supplies a
loop that does just that: the do-while. The do-while loop always executes its body at least
once, because its conditional expression is at the bottom of the loop. Its general form is

do {
// body of loop
} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates
the conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop
terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop.
It generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile {
public static void main(String argsl[]) {
int n = 10;

do {
System.out.println("tick " + n);
n--;

} while(n > 0);

}
}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

Chapter 5: Control Statements

do {
System.out.println("tick " + n);
} while(--n > 0);

In this example, the expression (- -n > 0) combines the decrement of n and the test for zero
into one expression. Here is how it works. First, the — —n statement executes, decrementing
n and returning the new value of n. This value is then compared with zero. If it is greater
than zero, the loop continues; otherwise it terminates.

The do-while loop is especially useful when you process a menu selection, because you
will usually want the body of a menu loop to execute at least once. Consider the following
program, which implements a very simple help system for Java’s selection and iteration
statements:

// Using a do-while to process a menu selection
class Menu
public static void main(String argsl(])
throws java.io.IOException {
char choice;

do {
System.out.println("Help on:");
System.out.println("™ 1. 1if");
System.out.println(" 2. switch");
System.out.println(" 3. while");
System.out.println(" 4. do-while");
System.out.println(" 5. for\n");
System.out .println("Choose one:") ;
choice = (char) System.in.read() ;

} while(choice < '1' || choice > '5');

System.out.println("\n") ;

switch (choice) {

case 'l':
System.out.println ("The if:\n")
System.out .println("if (condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n")
System.out.println("sw1tch(express1on) {m;
System.out.println(" case constant:");
System.out.println (" statement sequence") ;
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The while:\n")
System.out.println("while (condition) statement;");
break;

case '4':

81

88 Partl: The Java Language

System.out.println ("The do-while:\n") ;
System.out.println("do {");
System.out.println(" statement;");

(

System.out.println("} while (conditionm);");
break;
case '5':

System.out.println("The for:\n");
System.out.print ("for (init; condition; iteration)");
System.out.println (" statement;");

break;

}
}
}

Here is a sample run produced by this program:

Help on:
1. if
2. switch
3. while
4. do-while
5. for
Choose one:
4
The do-while:
do {
statement;

} while (condition);

In the program, the do-while loop is used to verify that the user has entered a valid choice.
If not, then the user is reprompted. Since the menu must be displayed at least once, the do-
while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard
by calling System.in.read(). This is one of Java’s console input functions. Although Java’s
console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used
here to obtain the user’s choice. It reads characters from standard input (returned as integers,
which is why the return value was cast to char). By default, standard input is line buffered, so
you must press ENTER before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java
programs will be graphical and window-based. For these reasons, not much use of console
input has been made in this book. However, it is useful in this context. One other point to
consider: Because System.in.read() is being used, the program must specify the throws
java.io.IOException clause. This line is necessary to handle input errors. It is part of Java’s
exception handling features, which are discussed in Chapter 10.

for

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a
powerful and versatile construct.

Chapter 5: Control Statements

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form
that has been in use since the original version of Java. The second is the new “for-each” form.
Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {
// body
}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of
the loop is executed. Generally, this is an expression that sets the value of the loop control
variable, which acts as a counter that controls the loop. It is important to understand that
the initialization expression is only executed once. Next, condition is evaluated. This must be
a Boolean expression. It usually tests the loop control variable against a target value. If this
expression is true, then the body of the loop is executed. If it is false, the loop terminates.
Next, the iteration portion of the loop is executed. This is usually an expression that increments
or decrements the loop control variable. The loop then iterates, first evaluating the conditional
expression, then executing the body of the loop, and then executing the iteration expression
with each pass. This process repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTick ({
public static void main(String argsl[]) {
int n;

for (n=10; n>0; n--)
System.out.println("tick " + n);
}

}

Declaring Loop Control Variables Inside the for Loop

Often the variable that controls a for loop is only needed for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, here is the preceding program recoded so that
the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick ({
public static void main(String argsl([]) {

// here, n is declared inside of the for loop
for (int n=10; n>0; n--)
System.out.println("tick " + n);

When you declare a variable inside a for loop, there is one important point to remember:
the scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need

89

90

Part I: The Java Language

to use the loop control variable elsewhere in your program, you will not be able to declare
it inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime numbers.
Notice that the loop control variable, i, is declared inside the for since it is not needed elsewhere.

// Test for primes.
class FindPrime ({
public static void main(String argsl[]) {
int num;
boolean isPrime = true;

num = 14;
for(int i=2; i <= num/i; i++)
if ((num % i) == 0) {
isPrime = false;
break;

}
}

if (isPrime) System.out.println("Prime");
else System.out.println("Not Prime") ;

}
}

Using the Comma
There will be times when you will want to include more than one statement in the initialization
and iteration portions of the for loop. For example, consider the loop in the following program:

class Sample {
public static void main(String argsl[]) {

int a, b;

b = 4;

for(a=1; a<b; a++) {
System.out.println("a = " + a);
System.out.println("b = " + b);
b--;

}
}
}

As you can see, the loop is controlled by the interaction of two variables. Since the loop is
governed by two variables, it would be useful if both could be included in the for statement,
itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish
this. To allow two or more variables to control a for loop, Java permits you to include multiple
statements in both the initialization and iteration portions of the for. Each statement is separated
from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded as shown here:

// Using the comma.
class Comma {

Chapter 5: Control Statements

public static void main(String args[]) {

int a, b;

for(a=1, b=4; a<b; a++, b--) {
System.out.println("a = " + a);
System.out.println("b = " + Db);

}
}
}

In this example, the initialization portion sets the values of both a and b. The two comma-
separated statements in the iteration portion are executed each time the loop repeats. The
program generates the following output:

oL oo
o
w N R

NOTE If you are familiar with C/C++, then you know that in those languages the comma is an
operator that can be used in any valid expression. However, this is not the case with Java. In
Java, the comma is a separator.

Some for Loop Variations

The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts—the initialization, the conditional test, and the
iteration—do not need to be used for only those purposes. In fact, the three sections of the
for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically,
this expression does not need to test the loop control variable against some target value. In
fact, the condition controlling the for can be any Boolean expression. For example, consider
the following fragment:

boolean done = false;
for(int i=1; !done; i++)
//
if (interrupted()) done = true;

}

In this example, the for loop continues to run until the boolean variable done is set to true.
It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the iteration
expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar {
public static void main(String argsl[]) {
int 1i;

91

92

Part I: The Java Language

boolean done = false;

i =0;

for(; !done;) {
System.out.println("i is " + 1i);
if (i == 10) done = true;
i++;

}
}
}

Here, the initialization and iteration expressions have been moved out of the for. Thus, parts
of the for are empty. While this is of no value in this simple example—indeed, it would be
considered quite poor style—there can be times when this type of approach makes sense.
For example, if the initial condition is set through a complex expression elsewhere in the
program or if the loop control variable changes in a nonsequential manner determined by
actions that occur within the body of the loop, it may be appropriate to leave these parts of
the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop
that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {
/] ...
}

This loop will run forever because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors, that
require an infinite loop, most “infinite loops” are really just loops with special termination
requirements. As you will soon see, there is a way to terminate a loop— even an infinite
loop like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop

Beginning with JDK 5, a second form of for was defined that implements a “for-each” style
loop. As you may know, contemporary language theory has embraced the for-each concept,
and it is quickly becoming a standard feature that programmers have come to expect. A for-
each style loop is designed to cycle through a collection of objects, such as an array, in strictly
sequential fashion, from start to finish. Unlike some languages, such as C#, that implement
a for-each loop by using the keyword foreach, Java adds the for-each capability by enhancing
the for statement. The advantage of this approach is that no new keyword is required, and no
preexisting code is broken. The for-each style of for is also referred to as the enhanced for loop.
The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end. The collection
being cycled through is specified by collection. There are various types of collections that
can be used with the for, but the only type used in this chapter is the array. (Other types of
collections that can be used with the for, such as those defined by the Collections Framework,

Chapter 5: Control Statements 93

are discussed later in this book.) With each iteration of the loop, the next element in the
collection is retrieved and stored in itr-var. The loop repeats until all elements in the collection
have been obtained.

Because the iteration variable receives values from the collection, fype must be the same
as (or compatible with) the elements stored in the collection. Thus, when iterating over arrays,
type must be compatible with the base type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop
that it is designed to replace. The following fragment uses a traditional for loop to compute
the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; 1 < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus,
the entire array is read in strictly sequential order. This is accomplished by manually
indexing the nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need
to establish a loop counter, specify a starting and ending value, and manually index the
array. Instead, it automatically cycles through the entire array, obtaining one element at
a time, in sequence, from beginning to end. For example, here is the preceding fragment
rewritten using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for (int x: nums) sum += X;

With each pass through the loop, x is automatically given a value equal to the next element
in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on.
Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach ({
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8,
int sum = 0;

9, 10 };

// use for-each style for to display and sum the values
for (int x : nums)

System.out.println("Value is: " + x);
sum += X;
System.out.println ("Summation: " + sum) ;

94

Part I: The Java Language

The output from the program is shown here.

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is: 10
Summation: 55

R w0 Jo0 Ul b W

As this output shows, the for-each style for automatically cycles through an array in sequence
from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,
it is possible to terminate the loop early by using a break statement. For example, this program
sums only the first five elements of nums:

// Use break with a for-each style for.
class ForEach2 {
public static void main(String argsl[]) {
int sum = 0;
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// use for to display and sum the values
for (int x : nums)

System.out.println("Value is: " + x);
sum += X;
if (x == 5) break; // stop the loop when 5 is obtained
}
System.out.println ("Summation of first 5 elements: " + sum);

This is the output produced:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5

Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break statement
can also be used with Java’s other loops, and it is discussed in detail later in this chapter.
There is one important point to understand about the for-each style loop. Its iteration
variable is “read-only” as it relates to the underlying array. An assignment to the
iteration variable has no effect on the underlying array. In other words, you can’t change

Chapter 5: Control Statements

the contents of the array by assigning the iteration variable a new value. For example,
consider this program:

// The for-each loop is essentially read-only.
class NoChange {
public static void main(String argsl[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for (int x : nums)
System.out.print(x + " ");
x = x * 10; // no effect on nums

}
System.out .println() ;

for (int x : nums)
System.out.print(x + " ");

System.out.println() ;

The first for loop increases the value of the iteration variable by a factor of 10. However,
this assignment has no effect on the underlying array nums, as the second for loop illustrates.
The output, shown here, proves this point:

1234546 789 10
12345678910

Iterating Over Multidimensional Arrays

The enhanced version of the for also works on multidimensional arrays. Remember,
however, that in Java, multidimensional arrays consist of arrays of arrays. (For example,

a two-dimensional array is an array of one-dimensional arrays.) This is important when
iterating over a multidimensional array, because each iteration obtains the next array, not an
individual element. Furthermore, the iteration variable in the for loop must be compatible
with the type of array being obtained. For example, in the case of a two-dimensional array,
the iteration variable must be a reference to a one-dimensional array. In general, when
using the for-each for to iterate over an array of N dimensions, the objects obtained will be
arrays of N-1 dimensions. To understand the implications of this, consider the following
program. It uses nested for loops to obtain the elements of a two-dimensional array in row-
order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach3 ({
public static void main(String args[]) {
int sum = 0;
int nums|[] [] = new int([3] [5];

// give nums some values
for(int i = 0; i < 3; 1++)

95

96

Part I: The Java Language

for(int j=0; j < 5; Jj++)
nums [1] [§] = (i+1)*(j+1);

// use for-each for to display and sum the values

for(int x[] : nums)
for(int y : x) {
System.out.println("Value is: " + y);
sum += y;
1
}
System.out.println ("Summation: " + sum) ;

}
}

The output from this program is shown here:

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is: 15
Summation: 90

W o WK oo B NULBd WN

=
N

In the program, pay special attention to this line:
for(int x[] : nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is
necessary because each iteration of the for obtains the next array in nums, beginning with
the array specified by nums[0]. The inner for loop then cycles through each of these arrays,
displaying the values of each element.

Applying the Enhanced for

Since the for-each style for can only cycle through an array sequentially, from start to finish,
you might think that its use is limited, but this is not true. A large number of algorithms
require exactly this mechanism. One of the most common is searching. For example, the
following program uses a for loop to search an unsorted array for a value. It stops if the
value is found.

Chapter 5: Control Statements

// Search an array using for-each style for.
class Search {
public static void main(String argsl[]) {
int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
int val = 5;
boolean found = false;

// use for-each style for to search nums for val
for(int x : nums)

if(x == val) {
found = true;
break;
1
}
if (found)

System.out.println("Value found!");

The for-each style for is an excellent choice in this application because searching an
unsorted array involves examining each element in sequence. (Of course, if the array were
sorted, a binary search could be used, which would require a different style loop.) Other
types of applications that benefit from for-each style loops include computing an average,
finding the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style
for is especially useful when operating on collections defined by the Collections Framework,
which is described in Part II. More generally, the for can cycle through the elements of any
collection of objects, as long as that collection satisfies a certain set of constraints, which are
described in Chapter 17.

Nested Loops

Like all other programming languages, Java allows loops to be nested. That is, one loop may
be inside another. For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
public static void main(String argsl[]) {
int i, j;

for (i=0; i<10; i++)
for(j=1i; j<10; J++)
System.out.print (".");
System.out.println() ;
}
}
}

97

98 Part I: The Java Language

The output produced by this program is shown here:

Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer
control to another part of your program. Each is examined here.

NOTE In addition to the jump statements discussed here, Java supports one other way that you
can change your program’s flow of execution: through exception handling. Exception handling
provides a structured method by which run-time errors can be trapped and handled by your
program. It is supported by the keywords try, catch, throw, throws, and finally. In essence,
the exception handling mechanism allows your program to perform a nonlocal branch. Since
exception handling is a large topic, it is discussed in its own chapter, Chapter 10.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as
a “civilized” form of goto. The last two uses are explained here.

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop. When a break statement is
encountered inside a loop, the loop is terminated and program control resumes at the next
statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
public static void main(String argsl[]) {
for(int i=0; i<100; i++)
if (1 == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);
}
System.out.println ("Loop complete.");
1
}

Chapter 5: Control Statements 99

This program generates the following output:

I s e s
©® N0 WN RO

i: 9
Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break statement
causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, here is the preceding program coded by use of a while loop.
The output from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2
public static void main(String argsl[]) {
int 1 = 0;

while(i < 100) {

if (i == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);
i++;

}

System.out.println("Loop complete.");

}
}

When used inside a set of nested loops, the break statement will only break out of the
innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 ({
public static void main(String argsl[]) {
for (int i=0; i<3; i++) {

System.out.print ("Pass " + 1 + ": ");

for (int j=0; j<100; J++) {
if(j == 10) break; // terminate loop if j is 10
System.out.print(j + " ");

}

System.out.println() ;

}

System.out .println("Loops complete.");

100

Part I: The Java Language

This program generates the following output:

Pass 0: 01 2 3 456 7 89
Pass 1: 01 23 456 789
Pass 2: 01 23 456 7 89

Loops complete.

As you can see, the break statement in the inner loop only causes termination of that loop.
The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency
to destructure your code. Second, the break that terminates a switch statement affects only
that switch statement and not any enclosing loops.

REMEMBER break was not designed to provide the normal means by which a loop is terminated.
The loop’s conditional expression serves this purpose. The break statement should be used to
cancel a loop only when some sort of special situation occurs.

Using break as a Form of Goto
In addition to its uses with the switch statement and loops, the break statement can also be
employed by itself to provide a “civilized” form of the goto statement. Java does not have a
goto statement because it provides a way to branch in an arbitrary and unstructured manner.
This usually makes goto-ridden code hard to understand and hard to maintain. It also prohibits
certain compiler optimizations. There are, however, a few places where the goto is a valuable
and legitimate construct for flow control. For example, the goto can be useful when you are
exiting from a deeply nested set of loops. To handle such situations, Java defines an expanded
form of the break statement. By using this form of break, you can, for example, break out of
one or more blocks of code. These blocks need not be part of a loop or a switch. They can be
any block. Further, you can specify precisely where execution will resume, because this form
of break works with a label. As you will see, break gives you the benefits of a goto without its
problems.

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-alone
block of code but it can also be a block that is the target of another statement. When this form of
break executes, control is transferred out of the named block. The labeled block must enclose
the break statement, but it does not need to be the immediately enclosing block. This means,
for example, that you can use a labeled break statement to exit from a set of nested blocks.
But you cannot use break to transfer control out of a block that does not enclose the break
statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed
by a colon. Once you have labeled a block, you can then use this label as the target of a
break statement. Doing so causes execution to resume at the end of the labeled block. For
example, the following program shows three nested blocks, each with its own label. The
break statement causes execution to jump forward, past the end of the block labeled second,
skipping the two println() statements.

Chapter 5: Control Statements

// Using break as a civilized form of goto.
class Break {
public static void main(String argsl[]) {
boolean t = true;

first: {
second: {
third: {
System.out.println("Before the break.");
if (t) break second; // break out of second block
System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}
}
}

Running this program generates the following output:

Before the break.
This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops.

For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4
public static void main(String argsl[]) {
outer: for(int i=0; i<3; i++) {

System.out.print ("Pass " + i + ": ");
for (int j=0; j<100; F++) {
if (j == 10) break outer; // exit both loops

System.out.print(j + " ");

}

System.out.println("This will not print");

}

System.out .println ("Loops complete.");

}
}

This program generates the following output:
Pass 0: 01 2 3 45 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been terminated.
Notice that this example labels the for statement, which has a block of code as its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {

101

102 Part I: The Java Language

public static void main(String args[]) {

one: for(int i=0; i<3; i++)
System.out.print ("Pass " + i + ": ");

}

for (int j=0; j<100; j++) {
if(j == 10) break one; // WRONG
System.out.print(j + " ");

}
}
}

Since the loop labeled one does not enclose the break statement, it is not possible to transfer
control out of that block.

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue
running the loop but stop processing the remainder of the code in its body for this particular
iteration. This is, in effect, a goto just past the body of the loop, to the loop’s end. The continue
statement performs such an action. In while and do-while loops, a continue statement
causes control to be transferred directly to the conditional expression that controls the loop.
In a for loop, control goes first to the iteration portion of the for statement and then to the
conditional expression. For all three loops, any intermediate code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on
each line:

// Demonstrate continue.
class Continue ({
public static void main(String argsl[]) {
for(int i=0; i<10; i++) {
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out .println("") ;

}
}
}

This code uses the % operator to check if i is even. If it is, the loop continues without printing
a newline. Here is the output from this program:

o o B N O
O g 0w

As with the break statement, continue may specify a label to describe which enclosing
loop to continue. Here is an example program that uses continue to print a triangular
multiplication table for 0 through 9.

Chapter 5: Control Statements

// Using continue with a label.
class ContinueLabel
public static void main(String argsl[]) {
outer: for (int i=0; i<10; i++) {
for(int j=0; j<10; j++) {
if(3 > 1) {
System.out .println() ;
continue outer;

}

System.out.print (" " + (i * j));

}
}

System.out.println() ;

}
}

The continue statement in this example terminates the loop counting j and continues with
the next iteration of the loop counting i. Here is the output of this program:

4

6 9

8 12 16

10 15 20 25

12 18 24 30 36

14 21 28 35 42 49

16 24 32 40 48 56 64

18 27 36 45 54 63 72 81

O O O O O O o o o o
O 00w J 0 Ul b WN R

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in which

early iteration is needed, the continue statement provides a structured way to accomplish it.

return

The last control statement is return. The return statement is used to explicitly return from
a method. That is, it causes program control to transfer back to the caller of the method.
As such, it is categorized as a jump statement. Although a full discussion of return must
wait until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method the return statement can be used to cause execution to branch
back to the caller of the method. Thus, the return statement immediately terminates the
method in which it is executed. The following example illustrates this point. Here, return
causes execution to return to the Java run-time system, since it is the run-time system that
calls main().

// Demonstrate return.
class Return {
public static void main(String argsl[]) {
boolean t = true;

103

104 Part I: The Java Language

System.out .println ("Before the return.");
if (t) return; // return to caller

System.out.println("This won't execute.");

}
}

The output from this program is shown here:
Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed,
control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the
Java compiler would flag an “unreachable code” error because the compiler would know
that the last println() statement would never be executed. To prevent this error, the if statement
is used here to trick the compiler for the sake of this demonstration.

CHAPTER
Introducing Classes

language is built because it defines the shape and nature of an object. As such, the
class forms the basis for object-oriented programming in Java. Any concept you wish
to implement in a Java program must be encapsulated within a class.
Because the class is so fundamental to Java, this and the next few chapters will be devoted
to it. Here, you will be introduced to the basic elements of a class and learn how a class can be
used to create objects. You will also learn about methods, constructors, and the this keyword.

The class is at the core of Java. It is the logical construct upon which the entire Java

Class Fundamentals

Classes have been used since the beginning of this book. However, until now, only the most
rudimentary form of a class has been used. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax. As you will see, classes are substantially more powerful than the
limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new data
type. Once defined, this new type can be used to create objects of that type. Thus, a class is
a template for an object, and an object is an instance of a class. Because an object is an instance
of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying the
data that it contains and the code that operates on that data. While very simple classes may
contain only code or only data, most real-world classes contain both. As you will see, a class’
code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to this
point are actually very limited examples of its complete form. Classes can (and usually do)
get much more complex. A simplified general form of a class definition is shown here:

class classname {
type instance-variablel;
type instance-variable2;

105

106

Part I: The Java Language

// ..

type instance-variableN;

type methodnamel(parameter-list) {
// body of method
)
type methodname2(parameter-list) {
// body of method
)
/]
type methodnameN (parameter-list) {
// body of method
}
}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class are
called members of the class. In most classes, the instance variables are acted upon and accessed
by the methods defined for that class. Thus, as a general rule, it is the methods that determine
how a class” data can be used.

Variables defined within a class are called instance variables because each instance of the
class (that is, each object of the class) contains its own copy of these variables. Thus, the data
for one object is separate and unique from the data for another. We will come back to this point
shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.
However, most methods will not be specified as static or public. Notice that the general form
of a class does not specify a main() method. Java classes do not need to have a main() method.
You only specify one if that class is the starting point for your program. Further, applets don’t
require a main() method at all.

NOTE C++ programmers will notice that the class declaration and the implementation of the
methods are stored in the same place and not defined separately. This sometimes makes for very
large .java files, since any class must be entirely defined in a single source file. This design feature
was built into Java because it was felt that in the long run, having specification, declaration, and
implementation all in one place makes for code that is easier to maintain.

A Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that defines
three instance variables: width, height, and depth. Currently, Box does not contain any
methods (but some will be added soon).

class Box {
double width;
double height;
double depth;

}

Chapter 6: Introducing Classes

As stated, a class defines a new type of data. In this case, the new data type is called Box.
You will use this name to declare objects of type Box. It is important to remember that a class
declaration only creates a template; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Box to come into existence.

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”
reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an object
that contains its own copy of each instance variable defined by the class. Thus, every Box
object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name of the
object with the name of an instance variable. For example, to assign the width variable of
mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the
mybox object the value of 100. In general, you use the dot operator to access both the instance
variables and the methods within an object.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java
*/
class Box {
double width;
double height;
double depth;

}

// This class declares an object of type Box.
class BoxDemo {
public static void main(String argsl[]) {
Box mybox = new Box () ;
double vol;

// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

107

108

Part I: The Java Language

You should call the file that contains this program BoxDemo.java, because the main() method
is in the class called BoxDemo, not the class called Box. When you compile this program, you
will find that two .class files have been created, one for Box and one for BoxDemo. The Java
compiler automatically puts each class into its own .class file. It is not necessary for both the
Box and the BoxDemo class to actually be in the same source file. You could put each class
in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the
following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means that
if you have two Box objects, each has its own copy of depth, width, and height. It is important
to understand that changes to the instance variables of one object have no effect on the instance
variables of another. For example, the following program declares two Box objects:

// This program declares two Box objects.

class Box {
double width;
double height;
double depth;

}

class BoxDemo2 {
public static void main(String argsl[]) {
Box myboxl = new Box () ;
Box mybox2 = new Box() ;
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box
vol = myboxl.width * myboxl.height * myboxl.depth;
System.out .println("Volume is " + vol);

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

Chapter 6: Introducing Classes 109

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects

As just explained, when you create a class, you are creating a new data type. You can use this
type to declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new operator.
The new operator dynamically allocates (that is, allocates at run time) memory for an object
and returns a reference to it. This reference is, more or less, the address in memory of the object
allocated by new. This reference is then stored in the variable. Thus, in Java, all class objects
must be dynamically allocated. Let’s look at the details of this procedure.

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box () ;

This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line executes,
mybox contains the value null, which indicates that it does not yet point to an actual object.
Any attempt to use mybox at this point will result in a compile-time error. The next line
allocates an actual object and assigns a reference to it to mybox. After the second line executes,
you can use mybox as if it were a Box object. But in reality, mybox simply holds the memory
address of the actual Box object. The effect of these two lines of code is depicted in Figure 6-1.

NOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new

As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname();

110

Part I: The Java Language

FIGURE 6-1 Statement Effect
Declaring an object
of type Box Box mybox; null
mybox
mybox = new Box(); —+— | Width
mybox Height
Depth
Box object

Here, class-var is a variable of the class type being created. The classname is the name of the
class that is being instantiated. The class name followed by parentheses specifies the constructor
for the class. A constructor defines what occurs when an object of a class is created. Constructors
are an important part of all classes and have many significant attributes. Most real-world
classes explicitly define their own constructors within their class definition. However, if no
explicit constructor is specified, then Java will automatically supply a default constructor.
This is the case with Box. For now, we will use the default constructor. Soon, you will see
how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things
as integers or characters. The answer is that Java’s primitive types are not implemented as
objects. Rather, they are implemented as “normal” variables. This is done in the interest of
efficiency. As you will see, objects have many features and attributes that require Java to treat
them differently than it treats the primitive types. By not applying the same overhead to the
primitive types that applies to objects, Java can implement the primitive types more efficiently.
Later, you will see object versions of the primitive types that are available for your use in
those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.
The advantage of this approach is that your program can create as many or as few objects as
it needs during the execution of your program. However, since memory is finite, it is possible
that new will not be able to allocate memory for an object because insufficient memory exists.
If this happens, a run-time exception will occur. (You will learn how to handle this and other
exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry
about running out of memory, but you will need to consider this possibility in real-world
programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a
new data type that can be used to create objects. That is, a class creates a logical framework
that defines the relationship between its members. When you declare an object of a class, you
are creating an instance of that class. Thus, a class is a logical construct. An object has physical
reality. (That is, an object occupies space in memory.) It is important to keep this distinction
clearly in mind.

Chapter 6: Introducing Classes 111

Assigning Object Reference Variables

Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box bl
Box b2

= new Box () ;
= bl;
You might think that b2 is being assigned a reference to a copy of the object referred to by
b1. That is, you might think that b1 and b2 refer to separate and distinct objects. However,
this would be wrong. Instead, after this fragment executes, b1 and b2 will both refer to the
same object. The assignment of b1 to b2 did not allocate any memory or copy any part of the
original object. It simply makes b2 refer to the same object as does b1. Thus, any changes
made to the object through b2 will affect the object to which b1 is referring, since they are the
same object.

This situation is depicted here:

/ Height Box object
Depth

—

b2

Although b1 and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1 will simply unhook b1 from the original object
without affecting the object or affecting b2. For example:

Box bl = new Box() ;
Box b2 = bl;

/] ...

bl = null;

Here, b1 has been set to null, but b2 still points to the original object.

REMEMBER When you assign one object reference variable to another object reference variable,
you are not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods

As mentioned at the beginning of this chapter, classes usually consist of two things: instance
variables and methods. The topic of methods is a large one because Java gives them so much
power and flexibility. In fact, much of the next chapter is devoted to methods. However, there
are some fundamentals that you need to learn now so that you can begin to add methods to
your classes.

112

Part I: The Java Language

This is the general form of a method:

type name(parameter-list) {
// body of method
}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially variables
that receive the value of the arguments passed to the method when it is called. If the method
has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine using
the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods, including
those that take parameters and those that return values.

Adding a Method to the Box Class

Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time, you will use methods to access the instance variables defined by the class. In fact,
methods define the interface to most classes. This allows the class implementor to hide the
specific layout of internal data structures behind cleaner method abstractions. In addition
to defining methods that provide access to data, you can also define methods that are used
internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while looking
at the preceding programs that the computation of a box’s volume was something that was
best handled by the Box class rather than the BoxDemo class. After all, since the volume of
a box is dependent upon the size of the box, it makes sense to have the Box class compute it.
To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box
void volume () ({
System.out.print ("Volume is ") ;
System.out.println(width * height * depth);
}
}

Chapter 6: Introducing Classes

class BoxDemo3 {
public static void main(String argsl[]) {
Box myboxl = new Box() ;
Box mybox2 = new Box() ;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box
mybox1.volume () ;

// display volume of second box
mybox2.volume () ;

}
}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume () ;
mybox2 .volume () ;

The first line here invokes the volume() method on mybox1. That is, it calls volume()

relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,
the call to mybox1.volume() displays the volume of the box defined by mybox1, and the
call to mybox2.volume() displays the volume of the box defined by mybox2. Each time
volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will
help clear things up. When mybox1.volume() is executed, the Java run-time system transfers
control to the code defined inside volume(). After the statements inside volume() have
executed, control is returned to the calling routine, and execution resumes with the line of
code following the call. In the most general sense, a method is Java’s way of implementing
subroutines.

There is something very important to notice inside the volume() method: the instance
variables width, height, and depth are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is defined by
its class, it does so directly, without explicit reference to an object and without use of the dot
operator. This is easy to understand if you think about it. A method is always invoked relative
to some object of its class. Once this invocation has occurred, the object is known. Thus, within

113

114

Part I: The Java Language

a method, there is no need to specify the object a second time. This means that width, height,
and depth inside volume() implicitly refer to the copies of those variables found in the object
that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of the class
in which that instance variable is defined, it must be done through an object, by use of the
dot operator. However, when an instance variable is accessed by code that is part of the same
class as the instance variable, that variable can be referred to directly. The same thing applies
to methods.

Returning a Value

While the implementation of volume() does move the computation of a box’s volume inside
the Box class where it belongs, it is not the best way to do it. For example, what if another
part of your program wanted to know the volume of a box, but not display its value? A better
way to implement volume() is to have it compute the volume of the box and return the result
to the caller. The following example, an improved version of the preceding program, does
just that:

// Now, volume () returns the volume of a box.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume () {
return width * height * depth;
}
}

class BoxDemo4 {
public static void main(String argsl[]) {
Box myboxl = new Box() ;
Box mybox2 = new Box() ;
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

Chapter 6: Introducing Classes

// get volume of second box
vol = mybox2.volume () ;
System.out.println("Volume is " + vol);

}
}

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned by
volume(). Thus, after

vol = myboxl.volume () ;

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

¢ The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is boolean,
you could not return an integer.

¢ The variable receiving the value returned by a method (such as vol, in this case) must
also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because
there is actually no need for the vol variable. The call to volume() could have been used in
the println() statement directly, as shown here:

System.out.println("Volume is " + myboxl.volume()) ;

In this case, when println() is executed, mybox1.volume() will be called automatically and
its value will be passed to println().

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or be used
in a number of slightly different situations. To illustrate this point, let’s use a very simple
example. Here is a method that returns the square of the number 10:

int square ()

{

return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very limited.
However, if you modify the method so that it takes a parameter, as shown next, then you
can make square() much more useful.

int square (int i)

{

return 1 * 1i;

}

115

116

Part I: The Java Language

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather than
just 10.

Here is an example:

int x, y;

x = square(5); // x equals 25
x = square(9); // x equals 81
y = 2;

x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.
As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter is a
variable defined by a method that receives a value when the method is called. For example,
in square(), i is a parameter. An argument is a value that is passed to a method when it is
invoked. For example, square(100) passes 100 as an argument. Inside square(), the parameter i
receives that value.

You can use a parameterized method to improve the Box class. In the preceding examples,
the dimensions of each box had to be set separately by use of a sequence of statements, such as:

myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone. For
example, it would be easy to forget to set a dimension. Second, in well-designed Java programs,
instance variables should be accessed only through methods defined by their class. In the
future, you can change the behavior of a method, but you can’t change the behavior of an
exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that takes
the dimensions of a box in its parameters and sets each instance variable appropriately. This
concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume () {

return width * height * depth;
1

// sets dimensions of box
void setDim(double w, double h, double d) {
width = w;

Chapter 6: Introducing Classes 117

height = h;
depth = d;
}
}

class BoxDemo5 {
public static void main(String argsl[]) {
Box myboxl = new Box() ;
Box mybox2 = new Box () ;
double vol;

// initialize each box
mybox1l.setDim (10, 20, 15);
mybox2.setDim (3, 6, 9);

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out .println("Volume is " + vol);

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

myboxl.setDim (10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d. Inside
setDim() the values of w, h, and d are then assigned to width, height, and depth, respectively.
For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you, then you
might want to take some time to experiment before moving on. The concepts of the method
invocation, parameters, and return values are fundamental to Java programming.

Constructors

It can be tedious to initialize all of the variables in a class each time an instance is created. Even
when you add convenience functions like setDim(), it would be simpler and more concise
to have all of the setup done at the time the object is first created. Because the requirement
for initialization is so common, Java allows objects to initialize themselves when they are
created. This automatic initialization is performed through the use of a constructor.

A constructor initializes an object immediately upon creation. It has the same name as the
class in which it resides and is syntactically similar to a method. Once defined, the constructor
is automatically called immediately after the object is created, before the new operator completes.
Constructors look a little strange because they have no return type, not even void. This is
because the implicit return type of a class’ constructor is the class type itself. It is the constructor’s
job to initialize the internal state of an object so that the code creating an instance will have
a fully initialized, usable object immediately.

118

Part I: The Java Language

You can rework the Box example so that the dimensions of a box are automatically

initialized when an object is constructed. To do so, replace setDim() with a constructor.
Let’s begin by defining a simple constructor that simply sets the dimensions of each box
to the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the

*/

dimensions of a box.

class Box {

}

double width;
double height;
double depth;

// This is the constructor for Box.

Box () {
System.out .println ("Constructing Box") ;
width = 10;
height = 10;
depth = 10;

}

// compute and return volume
double volume () {

return width * height * depth;

}

class BoxDemo6 {

}

public static void main(String args[]) {

// declare, allocate, and initialize Box objects
Box myboxl = new Box () ;
Box mybox2 = new Box() ;

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out .println("Volume is " + vol);

}

When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

Chapter 6: Introducing Classes

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor when
they were created. Since the constructor gives all boxes the same dimensions, 10 by 10 by 10,
both mybox1 and mybox2 will have the same volume. The println() statement inside Box()
is for the sake of illustration only. Most constructors will not display anything. They will
simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you allocate an
object, you use the following general form:

class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What is actually
happening is that the constructor for the class is being called. Thus, in the line

Box myboxl = new Box() ;

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding line
of code worked in earlier versions of Box that did not define a constructor. The default
constructor automatically initializes all instance variables to zero. The default constructor is
often sufficient for simple classes, but it usually won’t do for more sophisticated ones. Once
you define your own constructor, the default constructor is no longer used.

Parameterized Constructors

While the Box() constructor in the preceding example does initialize a Box object, it is not
very useful—all boxes have the same dimensions. What is needed is a way to construct Box
objects of various dimensions. The easy solution is to add parameters to the constructor. As
you can probably guess, this makes them much more useful. For example, the following version
of Box defines a parameterized constructor that sets the dimensions of a box as specified by
those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to
initialize the dimensions of a box.
*/
class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// compute and return volume
double volume () {

return width * height * depth;
1

}

119

120

Part I: The Java Language

class BoxDemo7 {
public static void main(String argsl[]) {
// declare, allocate, and initialize Box objects
Box myboxl new Box (10, 20, 15);
Box mybox2 = new Box (3, 6, 9);

double vol;

// get volume of first box
vol = myboxl.volume () ;
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out .println("Volume is " + vol);

}
}

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.
For example, in the following line,

Box myboxl = new Box (10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.
Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,
respectively.

The this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines
the this keyword. this can be used inside any method to refer to the current object. That is,
this is always a reference to the object on which the method was invoked. You can use this
anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.

Box (double w, double h, double d) (
this.width = w;
this.height = h;
this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While it is
redundant in this case, this is useful in other contexts, one of which is explained in the next
section.

Chapter 6: Introducing Classes 121

Instance Variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name inside
the same or enclosing scopes. Interestingly, you can have local variables, including formal
parameters to methods, which overlap with the names of the class’ instance variables. However,
when a local variable has the same name as an instance variable, the local variable hides the
instance variable. This is why width, height, and depth were not used as the names of the
parameters to the Box() constructor inside the Box class. If they had been, then width would
have referred to the formal parameter, hiding the instance variable width. While it is usually
easier to simply use different names, there is another way around this situation. Because this
lets you refer directly to the object, you can use it to resolve any name space collisions that
might occur between instance variables and local variables. For example, here is another
version of Box(), which uses width, height, and depth for parameter names and then uses
this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box (double width, double height, double depth) ({
this.width = width;
this.height = height;
this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing, and
some programmers are careful not to use local variables and formal parameter names that
hide instance variables. Of course, other programmers believe the contrary—that it is a good
convention to use the same names for clarity, and use this to overcome the instance variable
hiding. It is a matter of taste which approach you adopt.

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be wondering
how such objects are destroyed and their memory released for later reallocation. In some
languages, such as C++, dynamically allocated objects must be manually released by use of
a delete operator. Java takes a different approach; it handles deallocation for you automatically.
The technique that accomplishes this is called garbage collection. It works like this: when no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object can be reclaimed. There is no explicit need to destroy objects as in C++.
Garbage collection only occurs sporadically (if at all) during the execution of your program.
It will not occur simply because one or more objects exist that are no longer used. Furthermore,
different Java run-time implementations will take varying approaches to garbage collection,
but for the most part, you should not have to think about it while writing your programs.

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example, if
an object is holding some non-Java resource such as a file handle or character font, then you
might want to make sure these resources are freed before an object is destroyed. To handle

122

Part I: The Java Language

such situations, Java provides a mechanism called finalization. By using finalization, you can
define specific actions that will occur when an object is just about to be reclaimed by the
garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time
calls that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.
The garbage collector runs periodically, checking for objects that are no longer referenced by
any running state or indirectly through other referenced objects. Right before an asset is freed,
the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined
outside its class. This and the other access specifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope, for example. This means that you cannot
know when—or even if—finalize() will be executed. Therefore, your program should provide
other means of releasing system resources, etc., used by the object. It must not rely on finalize()
for normal program operation.

NOTE If you are familiar with C++, then you know that C++ allows you to define a destructor for
a class, which is called when an object goes out-of-scope. Java does not support this idea or provide
for destructors. The finalize() method only approximates the function of a destructor. As you
get more experienced with Java, you will see that the need for destructor functions is minimal
because of Java’s garbage collection subsystem.

A Stack Class

While the Box class is useful to illustrate the essential elements of a class, it is of little practical
value. To show the real power of classes, this chapter will conclude with a more sophisticated
example. As you recall from the discussion of object-oriented programming (OOP) presented in
Chapter 2, one of OOP’s most important benefits is the encapsulation of data and the code that
manipulates that data. As you have seen, the class is the mechanism by which encapsulation
is achieved in Java. By creating a class, you are creating a new data type that defines both the
nature of the data being manipulated and the routines used to manipulate it. Further, the
methods define a consistent and controlled interface to the class” data. Thus, you can use
the class through its methods without having to worry about the details of its implementation
or how the data is actually managed within the class. In a sense, a class is like a “data engine.”
No knowledge of what goes on inside the engine is required to use the engine through its
controls. In fact, since the details are hidden, its inner workings can be changed as needed.
As long as your code uses the class through its methods, internal details can change without
causing side effects outside the class.

Chapter 6: Introducing Classes

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down on the
table is the last plate to be used. Stacks are controlled through two operations traditionally
called push and pop. To put an item on top of the stack, you will use push. To take an item off
the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack mechanism.

Here is a class called Stack that implements a stack for integers:

// This class defines an integer stack that can hold 10 values.
class Stack {

int stck[] = new int[10];

int tos;

// Initialize top-of-stack
Stack () {
tos = -1;

}

// Push an item onto the stack
void push (int item) {

if (tos==9)
System.out.println("Stack is full.");
else
stck [++tos] = item;
1
// Pop an item from the stack
int pop() {

if(tos < 0) {
System.out.println("Stack underflow.") ;
return O0;

}

else
return stck[tos--];

}

As you can see, the Stack class defines two data items and three methods. The stack of integers
is held by the array stck. This array is indexed by the variable tos, which always contains the
index of the top of the stack. The Stack() constructor initializes tos to —1, which indicates an
empty stack. The method push() puts an item on the stack. To retrieve an item, call pop().
Since access to the stack is through push() and pop(), the fact that the stack is held in an
array is actually not relevant to using the stack. For example, the stack could be held in a
more complicated data structure, such as a linked list, yet the interface defined by push()
and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two integer stacks,
pushes some values onto each, and then pops them off.

class TestStack ({
public static void main(String args[]) {
Stack mystackl = new Stack() ;
Stack mystack2 = new Stack();

123

124 Part I: The Java Language

// push some numbers onto the stack
for(int i=0; 1<10; i++) mystackl.push (i) ;
for(int i=10; 1<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; 1<10; i++)
System.out.println (mystackl.pop()) ;

System.out.println("Stack in mystack2:");
for(int 1=0; 1<10; i++)
System.out.println (mystack2.pop()) ;

}
}

This program generates the following output:

Stack in mystackl:

O R N WP U1 49 0w

Stack in mystack2:
19
18
17
16
15
14
13
12
11
10

As you can see, the contents of each stack are separate.

One last point about the Stack class. As it is currently implemented, it is possible for the
array that holds the stack, stck, to be altered by code outside of the Stack class. This leaves
Stack open to misuse or mischief. In the next chapter, you will see how to remedy this situation.

CHAPTER

A Closer Look at
Methods and Classes

chapter. It examines several topics relating to methods, including overloading, parameter
passing, and recursion. The chapter then returns to the class, discussing access control,
the use of the keyword static, and one of Java’s most important built-in classes: String.

This chapter continues the discussion of methods and classes begun in the preceding

Overloading Methods

In Java it is possible to define two or more methods within the same class that share the
same name, as long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method overloading. Method
overloading is one of the ways that Java supports polymorphism. If you have never used
a language that allows the overloading of methods, then the concept may seem strange at
first. But as you will see, method overloading is one of Java’s most exciting and useful features.

When an overloaded method is invoked, Java uses the type and/or number of
arguments as its guide to determine which version of the overloaded method to actually
call. Thus, overloaded methods must differ in the type and/or number of their parameters.
While overloaded methods may have different return types, the return type alone is
insufficient to distinguish two versions of a method. When Java encounters a call to an
overloaded method, it simply executes the version of the method whose parameters match
the arguments used in the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class OverloadDemo {
void test () {
System.out.println ("No parameters") ;

}

// Overload test for one integer parameter.
void test (int a)
System.out.println("a: " + a);

}
125

126 Part I: The Java Language

// Overload test for two integer parameters.
void test (int a, int b) {

System.out.println("a and b: " + a + " " + Db);
}

// overload test for a double parameter

double test (double a)
System.out.println("double a: " + a);
return a*a;

}
}

class Overload ({
public static void main(String argsl[]) {
OverloadDemo ob = new OverloadDemo () ;
double result;

// call all versions of test()

ob.test () ;

ob.test (10) ;

ob.test (10, 20);

result = ob.test (123.25);

System.out .println("Result of ob.test (123.25): " + result);

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,
the second takes one integer parameter, the third takes two integer parameters, and the
fourth takes one double parameter. The fact that the fourth version of test() also returns a
value is of no consequence relative to overloading, since return types do not play a role in
overload resolution.

When an overloaded method is called, Java looks for a match between the arguments
used to call the method and the method’s parameters. However, this match need not always
be exact. In some cases, Java’s automatic type conversions can play a role in overload resolution.
For example, consider the following program:

// Automatic type conversions apply to overloading.
class OverloadDemo {
void test () {
System.out .println ("No parameters") ;
}

Chapter 7: A Closer Look at Methods and Classes

// Overload test for two integer parameters.
void test (int a, int b) {

System.out.println("a and b: " + a + " " + Db);
}

// overload test for a double parameter
void test (double a) {

System.out.println("Inside test (double) a: " + a);
}

}

class Overload ({
public static void main(String argsl[]) {
OverloadDemo ob = new OverloadDemo () ;
int i = 88;

ob.test () ;
ob.test (10, 20);

ob.test(i); // this will invoke test (double)
ob.test (123.2); // this will invoke test (double)

This program generates the following output:

No parameters
a and b: 10 20
Inside test (double) a: 88
Inside test (double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore, when
test() is called with an integer argument inside Overload, no matching method is found.
However, Java can automatically convert an integer into a double, and this conversion can
be used to resolve the call. Therefore, after test(int) is not found, Java elevates i to double
and then calls test(double). Of course, if test(int) had been defined, it would have been called
instead. Java will employ its automatic type conversions only if no exact match is found.

Method overloading supports polymorphism because it is one way that Java implements
the “one interface, multiple methods” paradigm. To understand how, consider the following.
In languages that do not support method overloading, each method must be given a unique
name. However, frequently you will want to implement essentially the same method for
different types of data. Consider the absolute value function. In languages that do not
support overloading, there are usually three or more versions of this function, each with a
slightly different name. For instance, in C, the function abs() returns the absolute value of
an integer, labs() returns the absolute value of a long integer, and fabs() returns the absolute
value of a floating-point value. Since C does not support overloading, each function has to
have its own name, even though all three functions do essentially the same thing. This makes
the situation more complex, conceptually, than it actually is. Although the underlying concept
of each function is the same, you still have three names to remember. This situation does not
occur in Java, because each absolute value method can use the same name. Indeed, Java’s

127

128

Part I: The Java Language

standard class library includes an absolute value method, called abs(). This method is
overloaded by Java’s Math class to handle all numeric types. Java determines which version
of abs() to call based upon the type of argument.

The value of overloading is that it allows related methods to be accessed by use of a
common name. Thus, the name abs represents the general action that is being performed. It
is left to the compiler to choose the right specific version for a particular circumstance. You,
the programmer, need only remember the general operation being performed. Through the
application of polymorphism, several names have been reduced to one. Although this
example is fairly simple, if you expand the concept, you can see how overloading can help
you manage greater complexity.

When you overload a method, each version of that method can perform any activity
you desire. There is no rule stating that overloaded methods must relate to one another.
However, from a stylistic point of view, method overloading implies a relationship. Thus,
while you can use the same name to overload unrelated methods, you should not. For
example, you could use the name sqr to create methods that return the square of an integer
and the square root of a floating-point value. But these two operations are fundamentally
different. Applying method overloading in this manner defeats its original purpose. In
practice, you should only overload closely related operations.

Overloading Constructors

In addition to overloading normal methods, you can also overload constructor methods. In
fact, for most real-world classes that you create, overloaded constructors will be the norm,
not the exception. To understand why;, let’s return to the Box class developed in the preceding
chapter. Following is the latest version of Box:

class Box {
double width;
double height;
double depth;

// This is the constructor for Box.
Box (double w, double h, double d) ({

width = w;
height = h;
depth = 4d;

}

// compute and return volume
double volume () {
return width * height * depth;

}
}

As you can see, the Box() constructor requires three parameters. This means that all
declarations of Box objects must pass three arguments to the Box() constructor. For example,
the following statement is currently invalid:

Box ob = new Box() ;

Chapter 7: A Closer Look at Methods and Classes

Since Box() requires three arguments, it’s an error to call it without them. This raises
some important questions. What if you simply wanted a box and did not care (or know)
what its initial dimensions were? Or, what if you want to be able to initialize a cube by
specifying only one value that would be used for all three dimensions? As the Box class
is currently written, these other options are not available to you.

Fortunately, the solution to these problems is quite easy: simply overload the Box
constructor so that it handles the situations just described. Here is a program that contains
an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize
the dimensions of a box various ways.
*/
class Box {
double width;
double height;
double depth;

// constructor used when all dimensions specified
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box (double len) {

width = height = depth = len;
1

// compute and return volume
double volume () {

return width * height * depth;
}

}

class OverloadCons {
public static void main(String argsl[]) {
// create boxes using the various constructors
Box myboxl new Box (10, 20, 15);
Box mybox2 = new Box() ;
Box mycube = new Box(7) ;

double vol;

129

130

Part I: The Java Language

// get volume of first box
vol = myboxl.volume () ;
System.out.println ("Volume of myboxl is " + vol);

// get volume of second box

vol = mybox2.volume () ;

System.out.println ("Volume of mybox2 is " + vol);
// get volume of cube

vol = mycube.volume () ;

System.out.println("Volume of mycube is " + vol);

The output produced by this program is shown here:

Volume of myboxl is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters
specified when new is executed.

Using Objects as Parameters

So far, we have only been using simple types as parameters to methods. However, it is both
correct and common to pass objects to methods. For example, consider the following short
program:

// Objects may be passed to methods.

class Test {

int a, b;

Test (int i, int j) {

a = 1i;
b =73;

// return true if o is equal to the invoking object
boolean equals(Test o)

if (o.a == a && o0.b == b) return true;
else return false;

class PassOb {
public static void main(String argsl[]) {

Test obl = new Test (100, 22);
Test ob2 = new Test (100, 22);
Test ob3 = new Test (-1, -1);

System.out.println("obl == ob2: " + obl.equals(ob2)) ;

Chapter 7: A Closer Look at Methods and Classes

System.out.println("obl == ob3: " + obl.equals(ob3)) ;

}
}

This program generates the following output:

obl == ob2: true
obl == ob3: false

As you can see, the equals() method inside Test compares two objects for equality and
returns the result. That is, it compares the invoking object with the one that it is passed. If
they contain the same values, then the method returns true. Otherwise, it returns false. Notice
that the parameter o in equals() specifies Test as its type. Although Test is a class type created
by the program, it is used in just the same way as Java’s built-in types.

One of the most common uses of object parameters involves constructors. Frequently, you
will want to construct a new object so that it is initially the same as some existing object. To do
this, you must define a constructor that takes an object of its class as a parameter. For example,
the following version of Box allows one object to initialize another:

// Here, Box allows one object to initialize another.

class Box {
double width;
double height;
double depth;

// Notice this constructor. It takes an object of type Box.
Box (Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box (double len) {
width = height = depth = len;

}

131

132 Part I: The Java Language

// compute and return volume
double volume () {

return width * height * depth;
1

}

class OverloadCons2 {
public static void main(String argsl[]) {
// create boxes using the various constructors
Box myboxl = new Box (10, 20, 15);
Box mybox2 = new Box () ;
Box mycube = new Box(7);

Box myclone = new Box (myboxl); // create copy of myboxl
double vol;

// get volume of first box

vol = myboxl.volume () ;

System.out.println ("Volume of myboxl is " + vol);
// get volume of second box

vol = mybox2.volume () ;

System.out .println ("Volume of mybox2 is " + vol);

// get volume of cube
vol = mycube.volume () ;
System.out.println ("Volume of cube is " + vol);

// get volume of clone
vol = myclone.volume () ;
System.out.println ("Volume of clone is " + vol);

As you will see when you begin to create your own classes, providing many forms
of constructors is usually required to allow objects to be constructed in a convenient and
efficient manner.

A Closer Look at Argument Passing

In general, there are two ways that a computer language can pass an argument to a subroutine.
The first way is call-by-value. This approach copies the value of an argument into the formal
parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument. The second way an argument can be passed is call-by-reference.
In this approach, a reference to an argument (not the value of the argument) is passed to the
parameter. Inside the subroutine, this reference is used to access the actual argument specified
in the call. This means that changes made to the parameter will affect the argument used to
call the subroutine. As you will see, Java uses both approaches, depending upon what is passed.

In Java, when you pass a primitive type to a method, it is passed by value. Thus, what
occurs to the parameter that receives the argument has no effect outside the method. For
example, consider the following program:

Chapter 7: A Closer Look at Methods and Classes

// Primitive types are passed by value.
class Test {
void meth(int i, int j) {
i *= 2;
j /= 2;
}
}

class CallByValue {
public static void main(String argsl[]) {
Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +
a+ " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +
a+ " " + b);

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values of a and b
used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because objects
are passed by what is effectively call-by-reference. Keep in mind that when you create a
variable of a class type, you are only creating a reference to an object. Thus, when you pass
this reference to a method, the parameter that receives it will refer to the same object as that
referred to by the argument. This effectively means that objects are passed to methods by use
of call-by-reference. Changes to the object inside the method do affect the object used as an
argument. For example, consider the following program:

// Objects are passed by reference.

class Test {
int a, b;

Test (int i, int j) {
a = 1i;
b =73;

1

// pass an object

void meth (Test o) {
o.a *= 2;

133

134 Part I: The Java Language

o.b /= 2;
1
}

class CallByRef (
public static void main(String args[]) {
Test ob = new Test (15, 20);

System.out.println("ob.a and ob.b before call: " +
ob.a + " " + ob.b);

ob.meth (ob) ;

System.out.println("ob.a and ob.b after call: " +
ob.a + " " + ob.b);

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used as an
argument.

As a point of interest, when an object reference is passed to a method, the reference itself
is passed by use of call-by-value. However, since the value being passed refers to an object,
the copy of that value will still refer to the same object that its corresponding argument does.

REMEMBER When a primitive type is passed to a method, it is done by use of call-by-value. Objects
are implicitly passed by use of call-by-reference.

Returning Objects

A method can return any type of data, including class types that you create. For example, in
the following program, the inctByTen() method returns an object in which the value of a is
ten greater than it is in the invoking object.

// Returning an object.
class Test {
int a;

Test (int i)
a = 1i;

}

Test incrByTen() {
Test temp = new Test (a+10) ;
return temp;

}

Chapter 7: A Closer Look at Methods and Classes 135

}

class RetOb
public static void main(String argsl[]) {
Test obl = new Test(2) ;
Test ob2;

ob2 = obl.incrByTen() ;
System.out.println("obl.a: " + obl.a);
System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.incrByTen() ;
System.out.println("ob2.a after second increase: "

+ ob2.a);
}
}
The output generated by this program is shown here:
obl.a: 2
ob2.a: 12

ob2.a after second increase: 22

As you can see, each time incrByTen() is invoked, a new object is created, and a reference
to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are dynamically
allocated using new, you don’t need to worry about an object going out-of-scope because the
method in which it was created terminates. The object will continue to exist as long as there is
a reference to it somewhere in your program. When there are no references to it, the object will
be reclaimed the next time garbage collection takes place.

Recursion

Java supports recursion. Recursion is the process of defining something in terms of itself. As
it relates to Java programming, recursion is the attribute that allows a method to call itself.
A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number. The
factorial of a number N is the product of all the whole numbers between 1 and N. For
example, 3 factorial is 1 x 2 x 3, or 6. Here is how a factorial can be computed by use of a
recursive method:

// A simple example of recursion.
class Factorial ({
// this is a recursive method
int fact (int n) {
int result;

if (n==1) return 1;
result = fact(n-1) * n;
return result;

136

Part I: The Java Language

}
}

class Recursion {
public static void main(String argsl[]) {
Factorial f = new Factorial() ;

System.out.println ("Factorial of 3 is " + f.fact(3));
System.out.println ("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

}
}

The output from this program is shown here:

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may seem a
bit confusing. Here is how it works. When fact() is called with an argument of 1, the function
returns 1; otherwise, it returns the product of fact(n-1)*n. To evaluate this expression, fact()
is called with n—1. This process repeats until n equals 1 and the calls to the method begin
returning.

To better understand how the fact() method works, let’s go through a short example.
When you compute the factorial of 3, the first call to fact() will cause a second call to be
made with an argument of 2. This invocation will cause fact() to be called a third time with
an argument of 1. This call will return 1, which is then multiplied by 2 (the value of n in the
second invocation). This result (which is 2) is then returned to the original invocation of
fact() and multiplied by 3 (the original value of n). This yields the answer, 6. You might
find it interesting to insert println() statements into fact(), which will show at what level
each call is and what the intermediate answers are.

When a method calls itself, new local variables and parameters are allocated storage
on the stack, and the method code is executed with these new variables from the start.

As each recursive call returns, the old local variables and parameters are removed from
the stack, and execution resumes at the point of the call inside the method. Recursive
methods could be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the iterative
equivalent because of the added overhead of the additional function calls. Many recursive
calls to a method could cause a stack overrun. Because storage for parameters and local
variables is on the stack and each new call creates a new copy of these variables, it is possible
that the stack could be exhausted. If this occurs, the Java run-time system will cause an
exception. However, you probably will not have to worry about this unless a recursive
routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer and
simpler versions of several algorithms than can their iterative relatives. For example, the
QuickSort sorting algorithm is quite difficult to implement in an iterative way. Also, some types
of Al-related algorithms are most easily implemented using recursive solutions.

Chapter 7: A Closer Look at Methods and Classes

When writing recursive methods, you must have an if statement somewhere to force the
method to return without the recursive call being executed. If you don’t do this, once you
call the method, it will never return. This is a very common error in working with recursion.
Use println() statements liberally during development so that you can watch what is going
on and abort execution if you see that you have made a mistake.

Here is one more example of recursion. The recursive method printArray() prints the
first i elements in the array values.

// Another example that uses recursion.

class RecTest {
int values|];

RecTest (int i) {
values = new int[i];

1
// display array -- recursively
void printArray(int i) {
if (i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-1]);
1

}

class Recursion2 ({
public static void main(String args[]) {
RecTest ob = new RecTest (10) ;
int 1i;

for (i=0; 1<10; 1i++) ob.values[i] = 1i;
ob.printArray (10) ;

}
}

This program generates the following output:

W 0w J o0 Ul WNKFE O

137

138

Part I: The Java Language

Introducing Access Control

As you know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control. Through encapsulation,
you can control what parts of a program can access the members of a class. By controlling
access, you can prevent misuse. For example, allowing access to data only through a well-
defined set of methods, you can prevent the misuse of that data. Thus, when correctly
implemented, a class creates a “black box” which may be used, but the inner workings

of which are not open to tampering. However, the classes that were presented earlier do
not completely meet this goal. For example, consider the Stack class shown at the end of
Chapter 6. While it is true that the methods push() and pop() do provide a controlled
interface to the stack, this interface is not enforced. That is, it is possible for another part of
the program to bypass these methods and access the stack directly. Of course, in the wrong
hands, this could lead to trouble. In this section, you will be introduced to the mechanism
by which you can precisely control access to the various members of a class.

How a member can be accessed is determined by the access specifier that modifies its
declaration. Java supplies a rich set of access specifiers. Some aspects of access control are
related mostly to inheritance or packages. (A package is, essentially, a grouping of classes.)
These parts of Java’s access control mechanism will be discussed later. Here, let’s begin by
examining access control as it applies to a single class. Once you understand the fundamentals
of access control, the rest will be easy.

Java’s access specifiers are public, private, and protected. Java also defines a default
access level. protected applies only when inheritance is involved. The other access specifiers
are described next.

Let’s begin by defining public and private. When a member of a class is modified by
the public specifier, then that member can be accessed by any other code. When a member
of a class is specified as private, then that member can only be accessed by other members of
its class. Now you can understand why main() has always been preceded by the public
specifier. It is called by code that is outside the program—that is, by the Java run-time
system. When no access specifier is used, then by default the member of a class is public
within its own package, but cannot be accessed outside of its package. (Packages are
discussed in the following chapter.)

In the classes developed so far, all members of a class have used the default access mode,
which is essentially public. However, this is not what you will typically want to be the case.
Usually, you will want to restrict access to the data members of a class—allowing access
only through methods. Also, there will be times when you will want to define methods
that are private to a class.

An access specifier precedes the rest of a member’s type specification. That is, it must
begin a member’s declaration statement. Here is an example:

public int i;
private double j;

private int myMethod (int a, char b) { //

To understand the effects of public and private access, consider the following program:

Chapter 7: A Closer Look at Methods and Classes 139

/* This program demonstrates the difference between
public and private.
*/
class Test
int a; // default access
public int b; // public access
private int c¢; // private access

// methods to access c

void setc(int i) { // set c's value
c = 1;

1

int getc() { // get c's value
return c;
1

}

class AccessTest {
public static void main(String argsl[]) {
Test ob = new Test();

// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;

// This is not OK and will cause an error
// ob.c = 100; // Error!

// You must access c through its methods

ob.setc(100); // OK

System.out.println("a, b, and c: " + ob.a + " " +
ob.b + " " 4+ ob.getc());

As you can see, inside the Test class, a uses default access, which for this example is the
same as specifying public. b is explicitly specified as public. Member c is given private
access. This means that it cannot be accessed by code outside of its class. So, inside the
AccessTest class, ¢ cannot be used directly. It must be accessed through its public methods:
setc() and getc(). If you were to remove the comment symbol from the beginning of the
following line,

// ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.
To see how access control can be applied to a more practical example, consider the
following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.
class Stack {
/* Now, both stck and tos are private. This means

140 Part I: The Java Language

that they cannot be accidentally or maliciously
altered in a way that would be harmful to the stack.
*/
private int stck[] = new int[10];
private int tos;

// Initialize top-of-stack
Stack () {
tos = -1;

}

// Push an item onto the stack
void push (int item) {

if (tos==9)

System.out.println("Stack is full.");
else

stck [++tos] = item;

}

// Pop an item from the stack
int pop () {
if(tos < 0) {
System.out.println("Stack underflow.") ;
return O;

}

else
return stck[tos--];

As you can see, now both stck, which holds the stack, and tos, which is the index of the
top of the stack, are specified as private. This means that they cannot be accessed or altered
except through push() and pop(). Making tos private, for example, prevents other parts of
your program from inadvertently setting it to a value that is beyond the end of the stck array.

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {
public static void main(String argsl[]) {
Stack mystackl = new Stack();
Stack mystack2 = new Stack() ;

// push some numbers onto the stack
for(int i=0; 1<10; i++) mystackl.push (i) ;
for(int i=10; 1<20; i++) mystack2.push(i) ;

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for(int i=0; 1<10; i++)
System.out.println (mystackl.pop()) ;

System.out .println("Stack in mystack2:");

Chapter 7: A Closer Look at Methods and Classes 141

for (int i=0; 1<10; i++)
System.out .println (mystack2.pop()) ;

// these statements are not legal
// mystackl.tos = -2;
// mystack2.stck[3] = 100;

Although methods will usually provide access to the data defined by a class, this does
not always have to be the case. It is perfectly proper to allow an instance variable to be public
when there is good reason to do so. For example, most of the simple classes in this book
were created with little concern about controlling access to instance variables for the sake of
simplicity. However, in most real-world classes, you will need to allow operations on data
only through methods. The next chapter will return to the topic of access control. As you
will see, it is particularly important when inheritance is involved.

Understanding static

There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally, a class member must be accessed only
in conjunction with an object of its class. However, it is possible to create a member that can
be used by itself, without reference to a specific instance. To create such a member, precede
its declaration with the keyword static. When a member is declared static, it can be accessed
before any objects of its class are created, and without reference to any object. You can declare
both methods and variables to be static. The most common example of a static member is
main(). main() is declared as static because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of
its class are declared, no copy of a static variable is made. Instead, all instances of the class
share the same static variable.

Methods declared as static have several restrictions:

¢ They can only call other static methods.
¢ They must only access static data.

¢ They cannot refer to this or super in any way. (The keyword super relates to
inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can declare a
static block that gets executed exactly once, when the class is first loaded. The following
example shows a class that has a static method, some static variables, and a static initialization
block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {

static int a = 3;

static int b;

static void meth(int x) {

142 Part I: The Java Language

System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);

}

static {
System.out.println("Static block initialized.");
b =a * 4;

}

public static void main(String argsl[]) {
meth (42) ;

}

}

As soon as the UseStatic class is loaded, all of the static statements are run. First, a is set to 3,
then the static block executes, which prints a message and then initializes b to a * 4 or 12. Then
main() is called, which calls meth(), passing 42 to x. The three println() statements refer to the
two static variables a and b, as well as to the local variable x.

Here is the output of the program:

Static block initialized.

X = 42
a =3
b = 12

Outside of the class in which they are defined, static methods and variables can be used
independently of any object. To do so, you need only specify the name of their class followed
by the dot operator. For example, if you wish to call a static method from outside its class, you
can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static method is declared. As you can
see, this format is similar to that used to call non-static methods through object-reference
variables. A static variable can be accessed in the same way—by use of the dot operator on
the name of the class. This is how Java implements a controlled version of global methods
and global variables.

Here is an example. Inside main(), the static method callme() and the static variable b
are accessed through their class name StaticDemo.

class StaticDemo {
static int a = 42;
static int b = 99;
static void callme() {
System.out.println("a = " + a);

}

Chapter 7: A Closer Look at Methods and Classes

}

class StaticByName {
public static void main(String argsl[]) {
StaticDemo.callme () ;
System.out.println("b = " + StaticDemo.Db) ;

}
}

Here is the output of this program:

a = 42
b = 99

Introducing final

A variable can be declared as final. Doing so prevents its contents from being modified.
This means that you must initialize a final variable when it is declared. For example:

final int FILE NEW = 1
final int FILE OPEN
final int FILE SAVE
final int FILE_ SAVEAS
final int FILE QUIT

i

2
3;
5

4;

7

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were constants,
without fear that a value has been changed.

It is a common coding convention to choose all uppercase identifiers for final variables.
Variables declared as final do not occupy memory on a per-instance basis. Thus, a final
variable is essentially a constant.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This second usage of final is described in the
next chapter, when inheritance is described.

Arrays Revisited

Arrays were introduced earlier in this book, before classes had been discussed. Now that you
know about classes, an important point can be made about arrays: they are implemented as
objects. Because of this, there is a special array attribute that you will want to take advantage
of. Specifically, the size of an array—that is, the number of elements that an array can hold—is
found in its length instance variable. All arrays have this variable, and it will always hold the
size of the array. Here is a program that demonstrates this property:

// This program demonstrates the length array member.
class Length {
public static void main(String argsl[]) {

int al[] = new int[10];
int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};
int a3[] = {4, 3, 2, 1};

143

144

Part I: The Java Language

System.out.println("length of al is " + al.length);
System.out.println("length of a2 is " + a2.length);
System.out.println("length of a3 is " + a3.length);

}
}

This program displays the following output:

length of al is 10
length of a2 is 8
length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of length
has nothing to do with the number of elements that are actually in use. It only reflects the
number of elements that the array is designed to hold.

You can put the length member to good use in many situations. For example, here is an
improved version of the Stack class. As you might recall, the earlier versions of this class
always created a ten-element stack. The following version lets you create stacks of any size.
The value of stck.length is used to prevent the stack from overflowing.

// Improved Stack class that uses the length array member.
class Stack {

private int stckl[];

private int tos;

// allocate and initialize stack
Stack (int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack
void push (int item) {
if (tos==stck.length-1) // use length member
System.out.println("Stack is full.");
else
stck [++tos] = item;

}

// Pop an item from the stack
int pop () {
if(tos < 0) {
System.out.println("Stack underflow.") ;
return O;
}
else
return stckl[tos--1;

}
}

class TestStack2
public static void main(String argsl[]) {

Chapter 7: A Closer Look at Methods and Classes 145

Stack mystackl = new Stack(5) ;

Stack mystack2 = new Stack(8) ;

// push some numbers onto the stack
for(int i=0; 1i<5; i++) mystackl.push(i);
for(int 1=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystackl:");

for (int i=0; 1<5; i++)
System.out .println (mystackl.pop()) ;

System.out.println("Stack in mystack2:");
for (int 1=0; 1<8; i++)
System.out.println(mystack2.pop()) ;

Notice that the program creates two stacks: one five elements deep and the other eight
elements deep. As you can see, the fact that arrays maintain their own length information
makes it easy to create stacks of any size.

Introducing Nested and Inner Classes

It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B does not exist independently of A. A nested class has access
to the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class. A nested class that
is declared directly within its enclosing class scope is a member of its enclosing class. It is
also possible to declare a nested class that is local to a block.

There are two types of nested classes: static and non-static. A static nested class is one
that has the static modifier applied. Because it is static, it must access the members of its
enclosing class through an object. That is, it cannot refer to members of its enclosing class
directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a non-static
nested class. It has access to all of the variables and methods of its outer class and may refer
to them directly in the same way that other non-static members of the outer class do.

The following program illustrates how to define and use an inner class. The class named
Outer has one instance variable named outer_x, one instance method named test(), and
defines one inner class called Inner.

// Demonstrate an inner class.
class Outer {
int outer x = 100;

void test () {
Inner inner = new Inner();
inner.display() ;

}

// this is an inner class

146

Part I: The Java Language

class Inner (
void display() {
System.out.println("display: outer x = " + outer x);

}
}
}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer() ;
outer.test () ;

}
}

Output from this application is shown here:
display: outer x = 100

In the program, an inner class named Inner is defined within the scope of class Outer.
Therefore, any code in class Inner can directly access the variable outer_x. An instance
method named display() is defined inside Inner. This method displays outer_x on the
standard output stream. The main() method of InnerClassDemo creates an instance of
class Outer and invokes its test() method. That method creates an instance of class Inner
and the display() method is called.

It is important to realize that an instance of Inner can be created only within the scope
of class Outer. The Java compiler generates an error message if any code outside of class
Outer attempts to instantiate class Inner. (In general, an inner class instance must be
created by an enclosing scope.) You can, however, create an instance of Inner outside of
Outer by qualifying its name with Outer, as in Outer.Inner.

As explained, an inner class has access to all of the members of its enclosing class, but
the reverse is not true. Members of the inner class are known only within the scope of the
inner class and may not be used by the outer class. For example,

// This program will not compile.
class Outer {
int outer x = 100;

void test () {
Inner inner = new Inner () ;
inner.display () ;

}

// this is an inner class
class Inner (
int y = 10; // vy is local to Inner
void display () {
System.out.println("display: outer x = " + outer x);
}

}

void showy ()
System.out.println(y); // error, y not known here!

Chapter 7: A Closer Look at Methods and Classes

}
}

class InnerClassDemo {
public static void main(String argsl[]) {
Outer outer = new Outer() ;
outer.test () ;

}
}

Here, y is declared as an instance variable of Inner. Thus, it is not known outside of that
class and it cannot be used by showy().

Although we have been focusing on inner classes declared as members within an outer
class scope, it is possible to define inner classes within any block scope. For example, you
can define a nested class within the block defined by a method or even within the body of a
for loop, as this next program shows.

// Define an inner class within a for loop.
class Outer {
int outer x = 100;

void test () {
for(int i=0; i<10; i++) {
class Inner {
void display() {
System.out.println("display: outer x = " + outer x);
}
}

Inner inner = new Inner () ;
inner.display () ;
}

}
}

class InnerClassDemo {
public static void main(String argsl([]) {
Outer outer = new Outer() ;
outer.test () ;

}
}

The output from this version of the program is shown here.

display: outer x 100
display: outer x = 100

display: outer x = 100
display: outer x = 100
display: outer x = 100
display: outer x = 100

display: outer x = 100
display: outer x 100

147

148

Part I: The Java Language

display: outer x = 100
display: outer x = 100

While nested classes are not applicable to all stiuations, they are particularly helpful when
handling events. We will return to the topic of nested classes in Chapter 22. There you will
see how inner classes can be used to simplify the code needed to handle certain types of
events. You will also learn about anonymous inner classes, which are inner classes that don’t
have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for Java.
They were added by Java 1.1.

Exploring the String Class

Although the String class will be examined in depth in Part II of this book, a short exploration
of it is warranted now, because we will be using strings in some of the example programs
shown toward the end of Part I. String is probably the most commonly used class in Java’s
class library. The obvious reason for this is that strings are a very important part of
programming.

The first thing to understand about strings is that every string you create is actually an
object of type String. Even string constants are actually String objects. For example, in the
statement

System.out.println("This is a String, too");

the string “This is a String, too” is a String constant.

The second thing to understand about strings is that objects of type String are immutable;
once a String object is created, its contents cannot be altered. While this may seem like a
serious restriction, it is not, for two reasons:

¢ If you need to change a string, you can always create a new one that contains
the modifications.

¢ Java defines a peer class of String, called StringBuffer, which allows strings
to be altered, so all of the normal string manipulations are still available in Java.
(StringBuffer is described in Part II of this book.)

Strings can be constructed in a variety of ways. The easiest is to use a statement like this:
String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is allowed.
For example, this statement displays myString:

System.out.println (myString) ;

Java defines one operator for String objects: +. It is used to concatenate two strings.
For example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing “I like Java.”

Chapter 7: A Closer Look at Methods and Classes

The following program demonstrates the preceding concepts:

// Demonstrating Strings.
class StringDemo {
public static void main(String argsl[]) {
String strObl = "First String";
String strOb2 "Second String";
String strOb3 = strObl + " and " + strOb2;

System.out .println (strObl) ;
System.out.println (strOb2) ;
System.out .println (strOb3) ;

The output produced by this program is shown here:

First String
Second String
First String and Second String

The String class contains several methods that you can use. Here are a few. You can test
two strings for equality by using equals(). You can obtain the length of a string by calling
the length() method. You can obtain the character at a specified index within a string by
calling charAt(). The general forms of these three methods are shown here:

boolean equals(String object)
int length()
char charAt(int index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.
class StringDemo2 {
public static void main(String argsl[]) {
String strObl = "First String";
String strOb2 "Second String";
String strOb3 = strObl;

System.out.println ("Length of strObl: " +
strObl.length()) ;

System.out.println("Char at index 3 in strObl: " +
strObl.charAt (3)) ;

if (strObl.equals (strOb2))

System.out.println("strObl == strOb2") ;
else
System.out.println("strObl != strOb2") ;

if (strObl.equals (strOb3))
System.out.println("strObl == strOb3") ;
else

149

150

Part I: The Java Language

System.out.println("strObl != strOb3") ;

This program generates the following output:

Length of strObl: 12

Char at index 3 in strObl: s
strObl != strOb2

strObl == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any other type
of object. For example:

// Demonstrate String arrays.
class StringDemo3
public static void main(String argsl[]) {
String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)
System.out.println("str[" + 1 + "]: " +
str[i]);

Here is the output from this program:

str[0]: one
str[l]: two
str[2]: three

As you will see in the following section, string arrays play an important part in many
Java programs.

Using Command-Line Arguments

Sometimes you will want to pass information into a program when you run it. This is
accomplished by passing command-line arguments to main(). A command-line argument is
the information that directly follows the program’s name on the command line when it is
executed. To access the command-line arguments inside a Java program is quite easy—
they are stored as strings in a String array passed to the args parameter of main(). The first
command-line argument is stored at args[0], the second at args[1], and so on. For example,
the following program displays all of the command-line arguments that it is called with:

// Display all command-line arguments.
class CommandLine
public static void main(String argsl[]) {
for(int i=0; i<args.length; i++)
System.out.println("args[" + i + "]: " +
args[i]) ;

Chapter 7: A Closer Look at Methods and Classes 151

Try executing this program, as shown here:

java CommandLine this is a test 100 -1

When you do, you will see the following output:

args[0] : this
args([1l]: is
args([2]: a
args[3]: test
args[4]: 100
args[5]: -1

REMEMBER All command-line arquments are passed as strings. You must convert numeric values
to their internal forms manually, as explained in Chapter 16.

Varargs: Variable-Length Arguments

Beginning with JDK 5, Java has included a feature that simplifies the creation of methods
that need to take a variable number of arguments. This feature is called varargs and it is
short for variable-length arquments. A method that takes a variable number of arguments
is called a variable-arity method, or simply a varargs method.

Situations that require that a variable number of arguments be passed to a method are
not unusual. For example, a method that opens an Internet connection might take a user
name, password, filename, protocol, and so on, but supply defaults if some of this information
is not provided. In this situation, it would be convenient to pass only the arguments to
which the defaults did not apply. Another example is the printf() method that is part of
Java’s 1/0 library. As you will see in Chapter 19, it takes a variable number of arguments,
which it formats and then outputs.

Prior to JDK 5, variable-length arguments could be handled two ways, neither of which
was particularly pleasing. First, if the maximum number of arguments was small and
known, then you could create overloaded versions of the method, one for each way the
method could be called. Although this works and is suitable for some cases, it applies to
only a narrow class of situations.

In cases where the maximum number of potential arguments was larger, or unknowable,
a second approach was used in which the arguments were put into an array, and then the
array was passed to the method. This approach is illustrated by the following program:

// Use an array to pass a variable number of

// arguments to a method. This is the old-style
// approach to variable-length arguments.

class PassArray {

static void vaTest (int v[]) {
System.out.print ("Number of args: " + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

152 Part I: The Java Language

System.out .println() ;

}

public static void main(String argsl([])

{

// Notice how an array must be created to
// hold the arguments.

int n1[] = { 10 };
int n2[] = { 1, 2, 3 };
int n3[] = { };

vaTest (nl); // 1 arg
vaTest (n2); // 3 args
vaTest (n3); // no args

}
}

The output from the program is shown here:

Number of args: 1 Contents: 10
Number of args: 3 Contents: 1 2 3
Number of args: 0 Contents:

In the program, the method vaTest() is passed its arguments through the array v. This
old-style approach to variable-length arguments does enable vaTest() to take an arbitrary
number of arguments. However, it requires that these arguments be manually packaged
into an array prior to calling vaTest(). Not only is it tedious to construct an array each time
vaTest() is called, it is potentially error-prone. The varargs feature offers a simpler, better
option.

A variable-length argument is specified by three periods (...). For example, here is how
vaTest() is written using a vararg;:

static void vaTest (int ... v) {

This syntax tells the compiler that vaTest() can be called with zero or more arguments. As a
result, v is implicitly declared as an array of type int[]. Thus, inside vaTest(), v is accessed
using the normal array syntax. Here is the preceding program rewritten using a vararg:

// Demonstrate variable-length arguments.
class VarArgs {

// vaTest () now uses a vararg.

static void vaTest (int ... v) {
System.out.print ("Number of args: " + v.length +
" Contents: ") ;

for(int x : v)
System.out.print(x + " ");

System.out.println() ;

}

public static void main(String argsl([])

{

Chapter 7: A Closer Look at Methods and Classes

// Notice how vaTest () can be called with a
// variable number of arguments.

vaTest (10) ; // 1 arg
vaTest (1, 2, 3); // 3 args
vaTest () ; // no args

}
}

The output from the program is the same as the original version.

There are two important things to notice about this program. First, as explained, inside
vaTest(), v is operated on as an array. This is because v is an array. The ... syntax simply tells
the compiler that a variable number of arguments will be used, and that these arguments will
be stored in the array referred to by v. Second, in main(), vaTest() is called with different
numbers of arguments, including no arguments at all. The arguments are automatically put
in an array and passed to v. In the case of no arguments, the length of the array is zero.

A method can have “normal” parameters along with a variable-length parameter. However,
the variable-length parameter must be the last parameter declared by the method. For example,
this method declaration is perfectly acceptable:

int doIt(int a, int b, double ¢, int ... vals) ({

In this case, the first three arguments used in a call to doIt() are matched to the first three
parameters. Then, any remaining arguments are assumed to belong to vals.

Remember, the varargs parameter must be last. For example, the following declaration
is incorrect:

int doIt(int a, int b, double ¢, int ... vals, boolean stopFlag) { // Error!

Here, there is an attempt to declare a regular parameter after the varargs parameter, which
is illegal.

There is one more restriction to be aware of: there must be only one varargs parameter.
For example, this declaration is also invalid:

int doIt(int a, int b, double ¢, int ... vals, double ... morevals) { // Error!

The attempt to declare the second varargs parameter is illegal.
Here is a reworked version of the vaTest() method that takes a regular argument and
a variable-length argument:

// Use varargs with standard arguments.
class VarArgs2 {

// Here, msg is a normal parameter and v is a
// varargs parameter.

static void vaTest (String msg, int ... v) {
System.out.print (msg + v.length +
" Contents: ");
for(int x : v)

System.out.print(x + " ");

System.out .println() ;

}

153

154 Part I: The Java Language

public static void main(String argsl([])

vaTest ("One vararg: ", 10);
vaTest ("Three varargs: ", 1, 2, 3);
vaTest ("No varargs: ");

}

The output from this program is shown here:

One vararg: 1 Contents: 10
Three varargs: 3 Contents: 1 2 3
No varargs: 0 Contents:

Overloading Vararg Methods

You can overload a method that takes a variable-length argument. For example, the following
program overloads vaTest() three times:

// Varargs and overloading.
class VarArgs3 {

static void vaTest (int ... v) {
System.out.print ("vaTest (int ...): " +
"Number of args: " + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println() ;

}
static void vaTest (boolean ... v) {
System.out .print ("vaTest (boolean ...) " +
"Number of args: " + v.length +
" Contents: ");
for (boolean x : V)

System.out.print(x + " ");

System.out.println() ;

}
static void vaTest (String msg, int ... v) {
System.out.print ("vaTest (String, int ...): " +
msg + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out .println() ;

}

Chapter 7: A Closer Look at Methods and Classes

public static void main(String argsl([])
{

vaTest (1, 2, 3);

vaTest ("Testing: ", 10, 20);

vaTest (true, false, false);

}
}

The output produced by this program is shown here:

vaTest (int ...): Number of args: 3 Contents: 1 2 3
vaTest (String, int ...): Testing: 2 Contents: 10 20
vaTest (boolean ...) Number of args: 3 Contents: true false false

This program illustrates both ways that a varargs method can be overloaded. First, the
types of its vararg parameter can differ. This is the case for vaTest(int ...) and vaTest(boolean
...). Remember, the ... causes the parameter to be treated as an array of the specified type.
Therefore, just as you can overload methods by using different types of array parameters,
you can overload vararg methods by using different types of varargs. In this case, Java uses
the type difference to determine which overloaded method to call.

The second way to overload a varargs method is to add a normal parameter. This is what
was done with vaTest(String, int ...). In this case, Java uses both the number of arguments and
the type of the arguments to determine which method to call.

NOTE A wvarargs method can also be overloaded by a non-varargs method. For example, vaTest(int x)
is a valid overload of vaTest() in the foregoing program. This version is invoked only when one
int argument is present. When two or more int arguments are passed, the varargs version
valest(int...v) is used.

Varargs and Ambiguity

Somewhat unexpected errors can result when overloading a method that takes a variable-length
argument. These errors involve ambiguity because it is possible to create an ambiguous call to
an overloaded varargs method. For example, consider the following program:

// Varargs, overloading, and ambiguity.

//

// This program contains an error and will
// not compile!

class VarArgs4 {

static void vaTest (int ... v) {
System.out.print ("vaTest (int ...): " +
"Number of args: " + v.length +
" Contents: ");

for(int x : v)
System.out.print(x + " ");

System.out.println() ;

}

155

156

Part I: The Java Language

static void vaTest (boolean ... v) {
System.out.print ("vaTest (boolean ...) " +
"Number of args: " + v.length +
" Contents: ");

for (boolean x : v)
System.out.print(x + " ");

System.out.println() ;

}

public static void main(String argsl[])

{

vaTest (1, 2, 3); // OK
vaTest (true, false, false); // OK

vaTest (); // Error: Ambiguous!

}
}

In this program, the overloading of vaTest() is perfectly correct. However, this program
will not compile because of the following call:

vaTest (); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to
vaTest(int ...) or vaTest(boolean ...). Both are equally valid. Thus, the call is inherently
ambiguous.

Here is another example of ambiguity. The following overloaded versions of vaTest()
are inherently ambiguous even though one takes a normal parameter:

static void vaTest(int ... v) { //
static void vaTest (int n, int ... v) { //

Although the parameter lists of vaTest() differ, there is no way for the compiler to resolve
the following call:

vaTest(1)

Does this translate into a call to vaTest(int ...), with one varargs argument, or into a call to
vaTest(int, int ...) with no varargs arguments? There is no way for the compiler to answer
this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to forego
overloading and simply use two different method names. Also, in some cases, ambiguity
errors expose a conceptual flaw in your code, which you can remedy by more carefully
crafting a solution.

CHAPTER
Inheritance

the creation of hierarchical classifications. Using inheritance, you can create a general

class that defines traits common to a set of related items. This class can then be inherited
by other, more specific classes, each adding those things that are unique to it. In the terminology
of Java, a class that is inherited is called a superclass. The class that does the inheriting is called
a subclass. Therefore, a subclass is a specialized version of a superclass. It inherits all of the
instance variables and methods defined by the superclass and adds its own, unique elements.

Inheritance is one of the cornerstones of object-oriented programming because it allows

Inheritance Basics

To inherit a class, you simply incorporate the definition of one class into another by using
the extends keyword. To see how, let’s begin with a short example. The following program
creates a superclass called A and a subclass called B. Notice how the keyword extends is
used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.

class A {
int 1, j;
void showij ()
System.out.println("i and j: " + i + " " + J);
1

}

// Create a subclass by extending class A.
class B extends A {

int k;
void showk () {
System.out.println("k: " + k);
}
void sum() {
System.out.println("i+j+k: " + (i+j+k));
}

}

157

158

Part I: The Java Language

class SimpleInheritance
public static void main(String argsl[]) {

A superOb = new A();
B subOb = new B();

// The superclass may be used by itself.
superOb.1i = 10;

superOb.j = 20;

System.out.println ("Contents of superOb: ");
superOb.showij () ;

System.out.println() ;

/* The subclass has access to all public members of
its superclass. */

subOb.1i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb. showij () ;

subOb. showk () ;

System.out .println() ;

System.out.println("Sum of i, j and k in subOb:") ;
subOb.sum() ;

The output from this program is shown here:

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is

why subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred
to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone

class. Being a superclass for a subclass does not mean that the superclass cannot be used
by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class
}

Chapter 8: Inheritance 159

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. You can, as stated,
create a hierarchy of inheritance in which a subclass becomes a superclass of another subclass.
However, no class can be a superclass of itself.

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider the
following simple class hierarchy:

/* In a class hierarchy, private members remain
private to their class.

This program contains an error and will not
compile.

*/

// Create a superclass.

class A {
int i; // public by default
private int j; // private to A

void setij (int x, int y) {
i = x;
J = vi
1
}

// A's j is not accessible here.
class B extends A
int total;
void sum() {
total = i + j; // ERROR, j is not accessible here
1

}

class Access {
public static void main(String argsl[]) {
B subOb = new B();

subOb.setij (10, 12);

subOb.sum() ;
System.out.println("Total is " + subOb.total) ;

}
}

This program will not compile because the reference to j inside the sum() method of B
causes an access violation. Since j is declared as private, it is only accessible by other members
of its own class. Subclasses have no access to it.

160

Part I: The Java Language

REMEMBER A class member that has been declared as private will remain private to its class. It is
not accessible by any code outside its class, including subclasses.

A More Practical Example

Let’s look at a more practical example that will help illustrate the power of inheritance.
Here, the final version of the Box class developed in the preceding chapter will be extended
to include a fourth component called weight. Thus, the new class will contain a box’s width,
height, depth, and weight.

// This program uses inheritance to extend Box.
class Box {

double width;

double height;

double depth;

// construct clone of an object

Box (Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box (double len) {

width = height = depth = len;
1

// compute and return volume
double volume () {

return width * height * depth;
}

}

// Here, Box is extended to include weight.
class BoxWeight extends Box {
double weight; // weight of box

Chapter 8: Inheritance 161

// constructor for BoxWeight
BoxWeight (double w, double h, double d, double m) {

width = w;
height = h;
depth = d

weight = m;
}
}

class DemoBoxWeight {
public static void main(String argsl[]) {
BoxWeight myboxl = new BoxWeight (10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight (2, 3, 4, 0.076);
double vol;

vol = myboxl.volume () ;

System.out.println ("Volume of myboxl is " + vol);
System.out .println ("Weight of myboxl is " + myboxl.weight) ;
System.out.println() ;

vol = mybox2.volume () ;
System.out.println ("Volume of mybox2 is " + vol);
System.out .println ("Weight of mybox2 is " + mybox2.weight) ;

The output from this program is shown here:

Volume of myboxl is 3000.0
Weight of myboxl is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight component.
It is not necessary for BoxWeight to re-create all of the features found in Box. It can simply
extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that defines
the attributes common to a set of objects, it can be used to create any number of more specific
subclasses. Each subclass can precisely tailor its own classification. For example, the following
class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
int color; // color of box

ColorBox (double w, double h, double d, int c)

width = w;
height = h;
depth = d;
color = c;

162

Part I: The Java Language

Remember, once you have created a superclass that defines the general aspects of an
object, that superclass can be inherited to form specialized classes. Each subclass simply
adds its own unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object

A reference variable of a superclass can be assigned a reference to any subclass derived from
that superclass. You will find this aspect of inheritance quite useful in a variety of situations.
For example, consider the following:

class RefDemo {
public static void main(String argsl[]) {
BoxWeight weightbox = new BoxWeight (3, 5, 7, 8.37);
Box plainbox = new Box() ;
double vol;

vol = weightbox.volume () ;

System.out.println ("Volume of weightbox is " + vol);

System.out.println ("Weight of weightbox is " +
weilghtbox.weight) ;

System.out.println() ;

// assign BoxWeight reference to Box reference
plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox
does not define a weight member. */
// System.out.println("Weight of plainbox is " + plainbox.weight) ;

}
}

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box objects.
Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference to the
weightbox object.

It is important to understand that it is the type of the reference variable—not the type of
the object that it refers to—that determines what members can be accessed. That is, when a
reference to a subclass object is assigned to a superclass reference variable, you will have access
only to those parts of the object defined by the superclass. This is why plainbox can’t access
weight even when it refers to a BoxWeight object. If you think about it, this makes sense,
because the superclass has no knowledge of what a subclass adds to it. This is why the last
line of code in the preceding fragment is commented out. It is not possible for a Box reference
to access the weight field, because Box does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

Chapter 8: Inheritance 163

Using super
In the preceding examples, classes derived from Box were not implemented as efficiently or
as robustly as they could have been. For example, the constructor for BoxWeight explicitly
initializes the width, height, and depth fields of Box(). Not only does this duplicate code
found in its superclass, which is inefficient, but it implies that a subclass must be granted access
to these members. However, there will be times when you will want to create a superclass that
keeps the details of its implementation to itself (that is, that keeps its data members private).
In this case, there would be no way for a subclass to directly access or initialize these variables
on its own. Since encapsulation is a primary attribute of OOP, it is not surprising that Java
provides a solution to this problem. Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second is

used to access a member of the superclass that has been hidden by a member of a subclass.
Each use is examined here.

Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following form of super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()
must always be the first statement executed inside a subclass’ constructor.
To see how super() is used, consider this improved version of the BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
double weight; // weight of box

// initialize width, height, and depth using super ()
BoxWeight (double w, double h, double d, double m) ({
super(w, h, d); // call superclass constructor

weight = m;
1
}

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box()
constructor to be called, which initializes width, height, and depth using these values.
BoxWeight no longer initializes these values itself. It only needs to initialize the value unique
to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since constructors
can be overloaded, super() can be called using any form defined by the superclass. The
constructor executed will be the one that matches the arguments. For example, here is a
complete implementation of BoxWeight that provides constructors for the various ways

164

Part I: The Java Language

that a box can be constructed. In each case, super() is called using the appropriate arguments.
Notice that width, height, and depth have been made private within Box.

// A complete implementation of BoxWeight.
class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box (Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box (double len) {
width = height = depth = len;

}

// compute and return volume
double volume () {
return width * height * depth;
1
}

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight (double w, double h, double d, double m) {

super (w, h, d);
weight = m;

}

// default constructor
BoxWeight ()
super () ;
weight =

}

-1;

Chapter 8: Inheritance

// call superclass constructor

// constructor used when cube is created

BoxWeight (double len,
super (len) ;
weight = m;

}

double

}

class DemoSuper {

m)

{

public static void main(String argsl[]) {

BoxWeight myboxl = new BoxWeight (10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight (2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight (3, 2);

BoxWeight myclone = new BoxWeight (mybox1) ;

double vol;

vol = myboxl.volume () ;

System.out .println ("Volume of myboxl is " + vol);
System.out.println ("Weight of myboxl is " + myboxl.weight) ;
System.out.println() ;

vol = mybox2.volume () ;

System.out.println ("Volume of mybox2 is " + vol);
System.out.println ("Weight of mybox2 is " + mybox2.weight) ;
System.out.println() ;

vol = mybox3.volume () ;

System.out.println ("Volume of mybox3 is " + vol);
System.out .println ("Weight of mybox3 is " + mybox3.weight) ;
System.out.println() ;

vol = myclone.volume () ;

System.out.println ("Volume of myclone is " + wvol);
System.out .println ("Weight of myclone is " + myclone.weight) ;

System.out.println() ;

vol = mycube.volume () ;
System.out.println("Volume
System.out.println ("Weight
System.out .println() ;

of
of

mycube is " + vol);
mycube is " + mycube.weight) ;

165

166

Part I: The Java Language

This program generates the following output:

Volume of myboxl is 3000.0
Weight of myboxl is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight():

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;

}

Notice that super() is passed an object of type BoxWeight—not of type Box. This still
invokes the constructor Box(Box ob). As mentioned earlier, a superclass variable can be
used to reference any object derived from that class. Thus, we are able to pass a BoxWeight
object to the Box constructor. Of course, Box only has knowledge of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling
the constructor of its immediate superclass. Thus, super() always refers to the superclass
immediately above the calling class. This is true even in a multileveled hierarchy. Also, super()
must always be the first statement executed inside a subclass constructor.

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to the superclass
of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of
a subclass hide members by the same name in the superclass. Consider this simple class
hierarchy:

// Using super to overcome name hiding.
class A {
int i;

}

Chapter 8: Inheritance 167

// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // i in A
i=Db; // 1iin B

}

void show () {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + 1i);

}

}

class UseSuper ({
public static void main(String args[]) {
B subOb = new B(1, 2);

subOb. show () ;

}
}

This program displays the following;:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined
in the superclass. As you will see, super can also be used to call methods that are hidden by a
subclass.

Creating a Multilevel Hierarchy

Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass. However, you can build hierarchies that contain as many layers of inheritance
as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.
For example, given three classes called A, B, and C, C can be a subclass of B, which is a
subclass of A. When this type of situation occurs, each subclass inherits all of the traits
found in all of its superclasses. In this case, C inherits all aspects of B and A. To see how
a multilevel hierarchy can be useful, consider the following program. In it, the subclass
BoxWeight is used as a superclass to create the subclass called Shipment. Shipment inherits
all of the traits of BoxWeight and Box, and adds a field called cost, which holds the cost of
shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.

class Box {
private double width;
private double height;
private double depth;

168 Part I: The Java Language

// construct clone of an object

Box (Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified

Box () {
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box (double len) {
width = height = depth = len;

}

// compute and return volume
double volume () {
return width * height * depth;
1
}

// Add weight.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object
BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;
1
// constructor when all parameters are specified
BoxWeight (double w, double h, double d, double m) {
super (w, h, d); // call superclass constructor
weight = m;

}

// default constructor
BoxWeight ()

super () ;

weight = -1;

}

Chapter 8:

// constructor used when cube is created
BoxWeight (double len, double m) {
super (len) ;
weight = m;
1
}

// Add shipping costs.
class Shipment extends BoxWeight {
double cost;

// construct clone of an object

Shipment (Shipment ob) { // pass object to constructor
super (ob) ;
cost = ob.cost;

}

// constructor when all parameters are specified
Shipment (double w, double h, double d,
double m, double c) {
super(w, h, d, m); // call superclass constructor
cost = c;

}

// default constructor
Shipment ()

super () ;

cost = -1;

}

// constructor used when cube is created
Shipment (double len, double m, double c) {
super (len, m);
cost = c;
}
}

class DemoShipment {
public static void main(String argsl[]) {
Shipment shipmentl =
new Shipment (10, 20, 15, 10, 3.41);
Shipment shipment2 =
new Shipment (2, 3, 4, 0.76, 1.28);

double vol;
vol = shipmentl.volume () ;
System.out.println("Volume of shipmentl is " + vol);

System.out.println ("Weight of shipmentl is "
+ shipmentl.weight) ;

System.out.println ("Shipping cost: $" + shipmentl.cost);

System.out .println() ;

Inheritance

169

170

Part I: The Java Language

vol = shipment2.volume () ;
System.out .println ("Volume of shipment2 is " + vol);
System.out.println ("Weight of shipment2 is "

+ shipment2.weight) ;
System.out.println ("Shipping cost: $" + shipment2.cost);

The output of this program is shown here:

Volume of shipmentl is 3000.0
Weight of shipmentl is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of Box
and BoxWeight, adding only the extra information it needs for its own, specific application.
This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the constructor
in the closest superclass. The super() in Shipment calls the constructor in BoxWeight. The
super() in BoxWeight calls the constructor in Box. In a class hierarchy; if a superclass
constructor requires parameters, then all subclasses must pass those parameters “up the
line.” This is true whether or not a subclass needs parameters of its own.

NOTE [n the preceding program, the entire class hierarchy, including Box, BoxWeight, and
Shipment, is shown all in one file. This is for your convenience only. In Java, all three classes
could have been placed into their own files and compiled separately. In fact, using separate
files is the norm, not the exception, in creating class hierarchies.

When Constructors Are Called

When a class hierarchy is created, in what order are the constructors for the classes that make up
the hierarchy called? For example, given a subclass called B and a superclass called A, is A’s
constructor called before B’s, or vice versa? The answer is that in a class hierarchy, constructors
are called in order of derivation, from superclass to subclass. Further, since super() must be the
first statement executed in a subclass’ constructor, this order is the same whether or not super()
is used. If super() is not used, then the default or parameterless constructor of each superclass
will be executed. The following program illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.
class A {
A |

System.out.println("Inside A's constructor.");

}

Chapter 8: Inheritance 171

// Create a subclass by extending class A.
class B extends A {
B() {

System.out.println("Inside B's constructor.");

}

// Create another subclass by extending B.
class C extends B {
cO) |

System.out.println("Inside C's constructor.");

}

class CallingCons {
public static void main(String argsl[]) {
C c = new C();
}

}

The output from this program is shown here:

Inside A’s constructor
Inside B’s constructor
Inside C’s constructor

As you can see, the constructors are called in order of derivation.

If you think about it, it makes sense that constructors are executed in order of derivation.
Because a superclass has no knowledge of any subclass, any initialization it needs to perform
is separate from and possibly prerequisite to any initialization performed by the subclass.
Therefore, it must be executed first.

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type signature as
a method in its superclass, then the method in the subclass is said to override the method in
the superclass. When an overridden method is called from within a subclass, it will always
refer to the version of that method defined by the subclass. The version of the method defined
by the superclass will be hidden. Consider the following:

// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = Db;

}

// display i and j
void show() {

System.out.println("i and j: " + i + " " + J);
1

}

172 Part I: The Java Language

class B extends A
int k;

B(int a, int b, int c) {
super (a, b);
k = c;

}

// display k - this overrides show() in A

void show () {
System.out.println("k: " + k);

}
}

class Override ({
public static void main(String argsl[]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}
}

The output produced by this program is shown here:
k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.

If you wish to access the superclass version of an overridden method, you can do so by
using super. For example, in this version of B, the superclass version of show() is invoked
within the subclass’ version. This allows all instance variables to be displayed.

class B extends A
int k;

B(int a, int b, int c) {
super (a, b);

k = ¢;

1

void show () {
super.show(); // this calls A's show()
System.out.println("k: " + k);

}

}

If you substitute this version of A into the previous program, you will see the following
output:

iand j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

Chapter 8: Inheritance

Method overriding occurs only when the names and the type signatures of the two
methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded - not
// overridden.
class A {

int i, j;

A(int a, int b) {
i = a;
j = Db;

}

// display i and j
void show () {

System.out.println("i and j: " + i + " " + J);
}

}

// Create a subclass by extending class A.
class B extends A
int k;

B(int a, int b, int c) {
super (a, b);
k = ¢;

}

// overload show ()
void show (String msg) {
System.out.println(msg + k) ;

}
}

class Override {
public static void main(String argsl[]) {
B subOb = new B(1l, 2, 3);

subOb.show ("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or name
hiding) takes place. Instead, the version of show() in B simply overloads the version of
show() in A.

173

174 Part I: The Java Language

Dynamic Method Dispatch

While the examples in the preceding section demonstrate the mechanics of method overriding,
they do not show its power. Indeed, if there were nothing more to method overriding than
a name space convention, then it would be, at best, an interesting curiosity, but of little real
value. However, this is not the case. Method overriding forms the basis for one of Java’s most
powerful concepts: dynamic method dispatch. Dynamic method dispatch is the mechanism
by which a call to an overridden method is resolved at run time, rather than compile time.
Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer
to a subclass object. Java uses this fact to resolve calls to overridden methods at run time. Here
is how. When an overridden method is called through a superclass reference, Java determines
which version of that method to execute based upon the type of the object being referred
to at the time the call occurs. Thus, this determination is made at run time. When different
types of objects are referred to, different versions of an overridden method will be called.
In other words, it is the type of the object being referred to (not the type of the reference variable)
that determines which version of an overridden method will be executed. Therefore, if a
superclass contains a method that is overridden by a subclass, then when different types
of objects are referred to through a superclass reference variable, different versions of the
method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {
void callme ()
System.out.println("Inside A's callme method") ;
}

}

class B extends A
// override callme ()
void callme ()
System.out.println("Inside B's callme method") ;
}

}

class C extends A {
// override callme ()
void callme () {
System.out .println("Inside C's callme method") ;
}

}

class Dispatch {
public static void main(String argsl[]) {

A a = new A(); // object of type A
B b = new B(); // object of type B
C c =new C(); // object of type C
A r; // obtain a reference of type A

Chapter 8: Inheritance

-

= a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

r = c; // r refers to a C object
r.callme(); // calls C's version of callme

}
}

The output from the program is shown here:

Inside A’s callme method
Inside B’s callme method
Ingside C’s callme method

This program creates one superclass called A and two subclasses of it, called B and C.
Subclasses B and C override callme() declared in A. Inside the main() method, objects of
type A, B, and C are declared. Also, a reference of type A, called r, is declared. The program
then in turn assigns a reference to each type of object to r and uses that reference to invoke
callme(). As the output shows, the version of callme() executed is determined by the type
of object being referred to at the time of the call. Had it been determined by the type of the
reference variable, r, you would see three calls to A’s callme() method.

NOTE Readers familiar with C++ or C# will recognize that overridden methods in Java are similar
to virtual functions in those languages.

Why Overridden Methods?

As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while allowing
subclasses to define the specific implementation of some or all of those methods. Overridden
methods are another way that Java implements the “one interface, multiple methods” aspect
of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater specialization.
Used correctly, the superclass provides all elements that a subclass can use directly. It also
defines those methods that the derived class must implement on its own. This allows the
subclass the flexibility to define its own methods, yet still enforces a consistent interface.
Thus, by combining inheritance with overridden methods, a superclass can define the general
form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that object-
oriented design brings to bear on code reuse and robustness. The ability of existing code
libraries to call methods on instances of new classes without recompiling while maintaining
a clean abstract interface is a profoundly powerful tool.

175

176

Part I: The Java Language

Applying Method Overriding

Let’s look at a more practical example that uses method overriding. The following program
creates a superclass called Figure that stores the dimensions of a two-dimensional object. It
also defines a method called area() that computes the area of an object. The program derives
two subclasses from Figure. The first is Rectangle and the second is Triangle. Each of

these subclasses overrides area() so that it returns the area of a rectangle and a triangle,
respectively.

// Using run-time polymorphism.
class Figure {

double diml;

double dim2;

Figure (double a, double b)
diml = a;
dim2 = b;

}

double area() {
System.out.println ("Area for Figure is undefined.");
return 0O;
}
}

class Rectangle extends Figure ({
Rectangle (double a, double b) {
super (a, b);
}

// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return diml * dim2;
1
}

class Triangle extends Figure ({
Triangle (double a, double b) ({
super (a, b);
}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return diml * dim2 / 2;
}
}

class FindAreas
public static void main(String argsl[]) {
Figure f = new Figure (10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle (10, 8);

Chapter 8: Inheritance 177

Figure figref;

figref = r;
System.out.println("Area is " + figref.areal());
figref = t;

System.out.println("Area is " + figref.area());

figref = £;
System.out.println("Area is " + figref.areal());

}
}

The output from the program is shown here:

Inside Area for Rectangle.
Area 1is 45

Inside Area for Triangle.
Area 1s 40

Area for Figure is undefined.
Area 1is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is possible
to define one consistent interface that is used by several different, yet related, types of objects.
In this case, if an object is derived from Figure, then its area can be obtained by calling area().
The interface to this operation is the same no matter what type of figure is being used.

Using Abstract Classes

There are situations in which you will want to define a superclass that declares the structure
of a given abstraction without providing a complete implementation of every method. That
is, sometimes you will want to create a superclass that only defines a generalized form that
will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a
class determines the nature of the methods that the subclasses must implement. One way
this situation can occur is when a superclass is unable to create a meaningful implementation
for a method. This is the case with the class Figure used in the preceding example. The
definition of area() is simply a placeholder. It will not compute and display the area of any
type of object.

As you will see as you create your own class libraries, it is not uncommon for a method
to have no meaningful definition in the context of its superclass. You can handle this situation
two ways. One way, as shown in the previous example, is to simply have it report a warning
message. While this approach can be useful in certain situations—such as debugging—it is
not usually appropriate. You may have methods that must be overridden by the subclass
in order for the subclass to have any meaning. Consider the class Triangle. It has no meaning
if area() is not defined. In this case, you want some way to ensure that a subclass does, indeed,
override all necessary methods. Java’s solution to this problem is the abstract method.

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier. These methods are sometimes referred to as subclasser responsibility
because they have no implementation specified in the superclass. Thus, a subclass must

178

Part I: The Java Language

override them—it cannot simply use the version defined in the superclass. To declare an
abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.

Any class that contains one or more abstract methods must also be declared abstract. To
declare a class abstract, you simply use the abstract keyword in front of the class keyword
at the beginning of the class declaration. There can be no objects of an abstract class. That is,
an abstract class cannot be directly instantiated with the new operator. Such objects would
be useless, because an abstract class is not fully defined. Also, you cannot declare abstract
constructors, or abstract static methods. Any subclass of an abstract class must either implement
all of the abstract methods in the superclass, or be itself declared abstract.

Here is a simple example of a class with an abstract method, followed by a class which
implements that method:

// A Simple demonstration of abstract.
abstract class A {
abstract void callme() ;

// concrete methods are still allowed in abstract classes
void callmetoo()

System.out.println("This is a concrete method.") ;
1

}

class B extends A
void callme ()
System.out.println("B's implementation of callme.");
1

}

class AbstractDemo {
public static void main(String argsl[]) {
B b = new BY();

b.callme() ;
b.callmetoo() ;

}
}

Notice that no objects of class A are declared in the program. As mentioned, it is not
possible to instantiate an abstract class. One other point: class A implements a concrete
method called callmetoo(). This is perfectly acceptable. Abstract classes can include as
much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to create
object references, because Java’s approach to run-time polymorphism is implemented through
the use of superclass references. Thus, it must be possible to create a reference to an abstract
class so that it can be used to point to a subclass object. You will see this feature put to use in
the next example.

Chapter 8: Inheritance 179

Using an abstract class, you can improve the Figure class shown earlier. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following version
of the program declares area() as abstract inside Figure. This, of course, means that all classes
derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure

double dimil;

double dim2;

Figure (double a, double b)
diml = a;
dim2 b;

}

// area is now an abstract method
abstract double areal() ;

}

class Rectangle extends Figure ({
Rectangle (double a, double b) {
super (a, b);

}

// override area for rectangle

double area() {
System.out .println("Inside Area for Rectangle.");
return diml * dim2;

}
}

class Triangle extends Figure ({
Triangle (double a, double b) ({
super (a, b);

}

// override area for right triangle

double area() {
System.out.println("Inside Area for Triangle.");
return diml * dim2 / 2;

}
}

class AbstractAreas {
public static void main(String args[]) {
// Figure f = new Figure (10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle (10, 8);
Figure figref; // this is OK, no object is created

figref = r;
System.out.println("Area is " + figref.areal());

180 Part I: The Java Language

figref = t;
System.out.println("Area is " + figref.areal());

}
}

As the comment inside main() indicates, it is no longer possible to declare objects of
type Figure, since it is now abstract. And, all subclasses of Figure must override area(). To
prove this to yourself, try creating a subclass that does not override area(). You will receive
a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference
variable of type Figure. The variable figref is declared as a reference to Figure, which means
that it can be used to refer to an object of any class derived from Figure. As explained, it is
through superclass reference variables that overridden methods are resolved at run time.

Using final with Inheritance

The keyword final has three uses. First, it can be used to create the equivalent of a named
constant. This use was described in the preceding chapter. The other two uses of final apply
to inheritance. Both are examined here.

Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times when
you will want to prevent it from occurring. To disallow a method from being overridden,
specify final as a modifier at the start of its declaration. Methods declared as final cannot
be overridden. The following fragment illustrates final:

class A {
final void meth() {
System.out .println("This is a final method.");

}
}

class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!") ;

}
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do
s0, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden
by a subclass. When a small final method is called, often the Java compiler can copy the
bytecode for the subroutine directly inline with the compiled code of the calling method,
thus eliminating the costly overhead associated with a method call. Inlining is only an
option with final methods. Normally, Java resolves calls to methods dynamically, at run
time. This is called late binding. However, since final methods cannot be overridden, a call
to one can be resolved at compile time. This is called early binding.

Chapter 8: Inheritance 181

Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final. Declaring a class as final implicitly declares all of its methods
as final, too. As you might expect, it is illegal to declare a class as both abstract and final
since an abstract class is incomplete by itself and relies upon its subclasses to provide
complete implementations.

Here is an example of a final class:

final class A {

/]
}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A
/] ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class

There is one special class, Object, defined by Java. All other classes are subclasses of Object.
That is, Object is a superclass of all other classes. This means that a reference variable of type
Object can refer to an object of any other class. Also, since arrays are implemented as classes,
a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose

Object clone() Creates a new object that is the same as the object being cloned.
boolean equals(Object object) |Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled.

Class getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking object.

void notify() Resumes execution of a thread waiting on the invoking object.
void notifyAll() Resumes execution of all threads waiting on the invoking object.
String toString() Returns a string that describes the object.

void wait() Waits on another thread of execution.

void wait(long milliseconds)
void wait(long milliseconds,
int nanoseconds)

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You
may override the others. These methods are described elsewhere in this book. However,
notice two methods now: equals() and toString(). The equals() method compares the
contents of two objects. It returns true if the objects are equivalent, and false otherwise.

182

Part I: The Java Language

The precise definition of equality can vary, depending on the type of objects being
compared. The toString() method returns a string that contains a description of the object
on which it is called. Also, this method is automatically called when an object is output
using println(). Many classes override this method. Doing so allows them to tailor a
description specifically for the types of objects that they create.

CHAPTER
Packages and Interfaces

Packages are containers for classes that are used to keep the class name space

compartmentalized. For example, a package allows you to create a class named List,
which you can store in your own package without concern that it will collide with some
other class named List stored elsewhere. Packages are stored in a hierarchical manner and
are explicitly imported into new class definitions.

In previous chapters, you have seen how methods define the interface to the data in

a class. Through the use of the interface keyword, Java allows you to fully abstract the
interface from its implementation. Using interface, you can specify a set of methods that
can be implemented by one or more classes. The interface, itself, does not actually define
any implementation. Although they are similar to abstract classes, interfaces have an
additional capability: A class can implement more than one interface. By contrast, a class
can only inherit a single superclass (abstract or otherwise).

This chapter examines two of Java’s most innovative features: packages and interfaces.

Packages

In the preceding chapters, the name of each example class was taken from the same
name space. This means that a unique name had to be used for each class to avoid name
collisions. After a while, without some way to manage the name space, you could run out
of convenient, descriptive names for individual classes. You also need some way to be
assured that the name you choose for a class will be reasonably unique and not collide
with class names chosen by other programmers. (Imagine a small group of programmers
fighting over who gets to use the name “Foobar” as a class name. Or, imagine the entire
Internet community arguing over who first named a class “Espresso.”) Thankfully, Java
provides a mechanism for partitioning the class name space into more manageable
chunks. This mechanism is the package. The package is both a naming and a visibility
control mechanism. You can define classes inside a package that are not accessible by
code outside that package. You can also define class members that are only exposed

to other members of the same package. This allows your classes to have intimate
knowledge of each other, but not expose that knowledge to the rest of the world.

183

184

Part I: The Java Language

Defining a Package

To create a package is quite easy: simply include a package command as the first statement
in a Java source file. Any classes declared within that file will belong to the specified package.
The package statement defines a name space in which classes are stored. If you omit the
package statement, the class names are put into the default package, which has no name.
(This is why you haven’t had to worry about packages before now.) While the default package
is fine for short, sample programs, it is inadequate for real applications. Most of the time,
you will define a package for your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a package
called MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any
classes you declare to be part of MyPackage must be stored in a directory called MyPackage.
Remember that case is significant, and the directory name must match the package name
exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package statement
is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. Be sure to choose your
package names carefully. You cannot rename a package without renaming the directory in
which the classes are stored.

Finding Packages and CLASSPATH

As just explained, packages are mirrored by directories. This raises an important question:
How does the Java run-time system know where to look for packages that you create? The
answer has three parts. First, by default, the Java run-time system uses the current working
directory as its starting point. Thus, if your package is in a subdirectory of the current
directory, it will be found. Second, you can specify a directory path or paths by setting the

Chapter 9: Packages and Interfaces

CLASSPATH environmental variable. Third, you can use the -classpath option with java
and javac to specify the path to your classes.
For example, consider the following package specification:

package MyPack

In order for a program to find MyPack, one of three things must be true. Either the program
can be executed from a directory immediately above MyPack, or the CLASSPATH must be
set to include the path to MyPack, or the -classpath option must specify the path to MyPack
when the program is run via java.

When the second two options are used, the class path must not include MyPack, itself.
It must simply specify the path to MyPack. For example, in a Windows environment, if the
path to MyPack is

C:\MyPrograms\Java\MyPack
Then the class path to MyPack is
C:\MyPrograms\Java

The easiest way to try the examples shown in this book is to simply create the package
directories below your current development directory, put the .class files into the
appropriate directories, and then execute the programs from the development directory.
This is the approach used in the following example.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:

// A simple package
package MyPack;

class Balance ({
String name;
double bal;

Balance (String n, double b)

name = n;
bal = b;
1
void show() {
if (bal<0)
System.out .print ("--> ") ;
System.out.println(name + ": $" + bal);

}
}

class AccountBalance
public static void main(String argsl[]) {
Balance current[] = new Balance[3];

185

186

Part I: The Java Language

current [0] = new Balance("K. J. Fielding", 123.23);
current [1] = new Balance("Will Tell", 157.02);
current [2] = new Balance ("Tom Jackson", -12.33);

for (int 1=0; 1<3; i++) current[i] .show() ;
}
}

Call this file AccountBalance.java and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack
directory. Then, try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this command.
(Alternatively, you can use one of the other two options described in the preceding section to
specify the path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means that it
cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection

In the preceding chapters, you learned about various aspects of Java’s access control mechanism
and its access specifiers. For example, you already know that access to a private member of
a class is granted only to other members of that class. Packages add another dimension to
access control. As you will see, Java provides many levels of protection to allow fine-grained
control over the visibility of variables and methods within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name space
and scope of variables and methods. Packages act as containers for classes and other
subordinate packages. Classes act as containers for data and code. The class is Java’s
smallest unit of abstraction. Because of the interplay between classes and packages, Java
addresses four categories of visibility for class members:

Subclasses in the same package

Non-subclasses in the same package

Subclasses in different packages

Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of ways
to produce the many levels of access required by these categories. Table 9-1 sums up the
interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit access

Chapter 9: Packages and Interfaces

TABLE 91 Private No Modifier | Protected Public
Class Member
Access Same class |Yes Yes Yes Yes
Same No Yes Yes Yes
package
subclass
Same No Yes Yes Yes
package
non-subclass
Different No No Yes Yes
package
subclass
Different No No No Yes
package
non-subclass

specification, it is visible to subclasses as well as to other classes in the same package. This is
the default access. If you want to allow an element to be seen outside your current package,
but only to classes that subclass your class directly, then declare that element protected.

Table 9-1 applies only to members of classes. A non-nested class has only two possible
access levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code within its
same package. When a class is public, it must be the only public class declared in the file,
and the file must have the same name as the class.

An Access Example

The following example shows all combinations of the access control modifiers. This example
has two packages and five classes. Remember that the classes for the two different
packages need to be stored in directories named after their respective packages—in this
case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and SamePackage.
The first class defines four int variables in each of the legal protection modes. The variable n
is declared with the default protection, n_pri is private, n_pro is protected, and n_pub is
public.

Each subsequent class in this example will try to access the variables in an instance
of this class. The lines that will not compile due to access restrictions are commented out.
Before each of these lines is a comment listing the places from which this level of protection
would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This
grants Derived access to every variable in Protection except for n_pri, the private one. The
third class, SamePackage, is not a subclass of Protection, but is in the same package and
also has access to all but n_pri.

187

188 Part I: The Java Language

This is file Protection.java:
package pl;

public class Protection ({
int n = 1;
private int n pri = 2;
protected int n pro = 3;
public int n pub = 4;

public Protection()
System.out.println("base constructor") ;
System.out.println("n "+ n);
("n
(
(

System.out.println("n pri = " + n pri);
System.out.println("n pro = " + n_pro);
System.out.println("n pub = " + n pub);

This is file Derived.java:
package pl;

class Derived extends Protection {

Derived ()
System.out.println("derived constructor") ;
System.out.println("n = " + n);

// class only

// System.out.println("n _pri = "4 + n_pri);
System.out.println("n pro = " + n pro);
System.out.println("n pub = " + n pub);

}

This is file SamePackage.java:
package pl;

class SamePackage
SamePackage () {

Protection p = new Protection() ;
System.out.println ("same package constructor") ;

System.out.println("n = " + p.n);

// class only

// System.out.println("n pri = " + p.n pri);
System.out.println("n pro = " + p.n _pro);
System.out.println("n pub = " + p.n pub);

Chapter 9: Packages and Interfaces

Following is the source code for the other package, p2. The two classes defined in p2
cover the other two conditions that are affected by access control. The first class, Protection2, is
a subclass of p1.Protection. This grants access to all of p1.Protection’s variables except for
n_pri (because it is private) and n, the variable declared with the default protection. Remember,
the default only allows access from within the class or the package, not extra-package
subclasses. Finally, the class OtherPackage has access to only one variable, n_pub, which
was declared public.

This is file Protection2.java:

package p2;
class Protection2 extends pl.Protection {
Protection2 () ({

System.out.println("derived other package constructor") ;

// class or package only
// System.out.println("n = " + n);

// class only

// System.out.println("n pri = " + n pri);
System.out.println("n pro = " + n pro);
System.out.println("n pub = " + n pub);

This is file OtherPackage.java:
package p2;
class OtherPackage ({
OtherPackage ()
pl.Protection p = new pl.Protection() ;

System.out.println ("other package constructor") ;

// class or package only
// System.out.println("'n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only
// System.out.println("n pro = " + p.n pro);

System.out.println("n pub = " + p.n pub);

189

190

Part I: The Java Language

If you wish to try these two packages, here are two test files you can use. The one for
package p1 is shown here:

// Demo package pl.
package pl;

// Instantiate the various classes in pl.
public class Demo {
public static void main(String argsl[]) {
Protection obl = new Protection() ;
Derived ob2 = new Derived() ;
SamePackage ob3 = new SamePackage () ;

}
}

The test file for p2 is shown next:

// Demo package p2.
package p2;

// Instantiate the various classes in p2.
public class Demo
public static void main(String argsl[]) {
Protection2 obl = new Protection2() ;
OtherPackage ob2 = new OtherPackage() ;

}
}

Importing Packages

Given that packages exist and are a good mechanism for compartmentalizing diverse classes
from each other, it is easy to see why all of the built-in Java classes are stored in packages.
There are no core Java classes in the unnamed default package; all of the standard classes
are stored in some named package. Since classes within packages must be fully qualified
with their package name or names, it could become tedious to type in the long dot-separated
package path name for every class you want to use. For this reason, Java includes the import
statement to bring certain classes, or entire packages, into visibility. Once imported, a class
can be referred to directly, using only its name. The import statement is a convenience to
the programmer and is not technically needed to write a complete Java program. If you are
going to refer to a few dozen classes in your application, however, the import statement will
save a lot of typing.

In a Java source file, import statements occur immediately following the package statement
(if it exists) and before any class definitions. This is the general form of the import statement:

import pkg1[.pkg2].(classname | *);

Here, pkg1 is the name of a top-level package, and pkg? is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on the
depth of a package hierarchy, except that imposed by the file system. Finally, you specify

Chapter 9: Packages and Interfaces

either an explicit classname or a star (*), which indicates that the Java compiler should import
the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

CAUTION The star form may increase compilation time—especially if you import several large
packages. For this reason it is a good idea to explicitly name the classes that you want to use
rather than importing whole packages. However, the star form has absolutely no effect on the
run-time performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called java.
The basic language functions are stored in a package inside of the java package called
java.lang. Normally, you have to import every package or class that you want to use, but
since Java is useless without much of the functionality in java.lang, it is implicitly imported
by the compiler for all programs. This is equivalent to the following line being at the top of
all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import using the
star form, the compiler will remain silent, unless you try to use one of the classes. In that case,
you will get a compile-time error and have to explicitly name the class specifying its package.

It must be emphasized that the import statement is optional. Any place you use a class
name, you can use its fully qualified name, which includes its full package hierarchy. For
example, this fragment uses an import statement:

import java.util.=*;
class MyDate extends Date {

}

The same example without the import statement looks like this:

class MyDate extends java.util.Date

}

In this version, Date is fully-qualified.

As shown in Table 9-1, when a package is imported, only those items within the package
declared as public will be available to non-subclasses in the importing code. For example,
if you want the Balance class of the package MyPack shown earlier to be available as a
stand-alone class for general use outside of MyPack, then you will need to declare it as
public and put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its
show () method are public. This means that they can
be used by non-subclass code outside their package.

*/

public class Balance {

191

192 Part I: The Java Language

String name;
double bal;

public Balance(String n, double b)
name = n;
bal = b;

}

public void show() {

if (bal<0)
System.out.print ("--> ") ;
System.out .println(name + ": $" + bal);

}
}

As you can see, the Balance class is now public. Also, its constructor and its show()
method are public, too. This means that they can be accessed by any type of code outside
the MyPack package. For example, here TestBalance imports MyPack and is then able to
make use of the Balance class:

import MyPack.*;

class TestBalance {
public static void main(String argsl[]) {

/* Because Balance is public, you may use Balance
class and call its constructor. */
Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()

}
}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

Interfaces

Using the keyword interface, you can fully abstract a class’ interface from its implementation.
That is, using interface, you can specify what a class must do, but not how it does it. Interfaces
are syntactically similar to classes, but they lack instance variables, and their methods are
declared without any body. In practice, this means that you can define interfaces that don’t
make assumptions about how they are implemented. Once it is defined, any number of
classes can implement an interface. Also, one class can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined by
the interface. However, each class is free to determine the details of its own implementation.
By providing the interface keyword, Java allows you to fully utilize the “one interface,
multiple methods” aspect of polymorphism.

Chapter 9: Packages and Interfaces

Interfaces are designed to support dynamic method resolution at run time. Normally,
in order for a method to be called from one class to another, both classes need to be present
at compile time so the Java compiler can check to ensure that the method signatures are
compatible. This requirement by itself makes for a static and nonextensible classing
environment. Inevitably in a system like this, functionality gets pushed up higher and higher
in the class hierarchy so that the mechanisms will be available to more and more subclasses.
Interfaces are designed to avoid this problem. They disconnect the definition of a method or
set of methods from the inheritance hierarchy. Since interfaces are in a different hierarchy from
classes, it is possible for classes that are unrelated in terms of the class hierarchy to implement
the same interface. This is where the real power of interfaces is realized.

NOTE Interfaces add most of the functionality that is required for many applications that would
normally resort to using multiple inheritance in a language such as C++.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name {

return-type method-namel(parameter-list);
return-type method-name2(parameter-list);
type final-varnamel = value;

type final-varname2 = value;

/e

return-type method-nameN(parameter-list);
type final-varnameN = value;

}

When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as
public, the interface can be used by any other code. In this case, the interface must be the
only public interface declared in the file, and the file must have the same name as the interface.
name is the name of the interface, and can be any valid identifier. Notice that the methods that
are declared have no bodies. They end with a semicolon after the parameter list. They are,
essentially, abstract methods; there can be no default implementation of any method specified
within an interface. Each class that includes an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final and
static, meaning they cannot be changed by the implementing class. They must also be
initialized. All methods and variables are implicitly public.

Here is an example of an interface definition. It declares a simple interface that contains
one method called callback() that takes a single integer parameter.

interface Callback
void callback (int param) ;

}

193

194

Part I: The Java Language

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface. To
implement an interface, include the implements clause in a class definition, and then create
the methods defined by the interface. The general form of a class that includes the implements
clause looks like this:

class classname [extends superclass] [implements interface [,interface...]]
// class-body
}

If a class implements more than one interface, the interfaces are separated with a comma. If
a class implements two interfaces that declare the same method, then the same method will
be used by clients of either interface. The methods that implement an interface must be
declared public. Also, the type signature of the implementing method must match exactly
the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback {
// Implement Callback's interface
public void callback (int p)

System.out.println("callback called with " + p);

}
}

Notice that callback() is declared using the public access specifier.

REMEMBER When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client implements
callback() and adds the method nonIfaceMeth():

class Client implements Callback {
// Implement Callback's interface
public void callback (int p)
System.out.println("callback called with " + p);
}

void nonIfaceMeth() {
System.out.println("Classes that implement interfaces " +
"may also define other members, too.");

Chapter 9: Packages and Interfaces

Accessing Implementations Through Interface References

You can declare variables as object references that use an interface rather than a class type.
Any instance of any class that implements the declared interface can be referred to by such
a variable. When you call a method through one of these references, the correct version will
be called based on the actual instance of the interface being referred to. This is one of the
key features of interfaces. The method to be executed is looked up dynamically at run time,
allowing classes to be created later than the code which calls methods on them. The calling
code can dispatch through an interface without having to know anything about the “callee.”
This process is similar to using a superclass reference to access a subclass object, as described
in Chapter 8.

CAUTION Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use interfaces
casually in performance-critical code.

The following example calls the callback() method via an interface reference variable:

class TestIface
public static void main(String argsl[]) {
Callback ¢ = new Client();
c.callback(42) ;

}
}

The output of this program is shown here:
callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was assigned an
instance of Client. Although ¢ can be used to access the callback() method, it cannot access
any other members of the Client class. An interface reference variable only has knowledge
of the methods declared by its interface declaration. Thus, ¢ could not be used to access
nonlfaceMeth() since it is defined by Client but not Callback.

While the preceding example shows, mechanically, how an interface reference variable
can access an implementation object, it does not demonstrate the polymorphic power of
such a reference. To sample this usage, first create the second implementation of Callback,
shown here:

// Another implementation of Callback.
class AnotherClient implements Callback {
// Implement Callback's interface
public void callback (int p)
System.out.println ("Another version of callback");
System.out.println("p squared is " + (p*p));
}
}

195

196

Part I: The Java Language

Now, try the following class:

class TestIface2 ({
public static void main(String args[]) {
Callback ¢ = new Client () ;
AnotherClient ob = new AnotherClient () ;

c.callback(42) ;

¢ = ob; // ¢ now refers to AnotherClient object
c.callback(42) ;

}
}

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

As you can see, the version of callback() that is called is determined by the type of object
that c refers to at run time. While this is a very simple example, you will see another, more
practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by that
interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {
int a, b;
void show () {
System.out.println(a + " " + b);
1

//
}

Here, the class Incomplete does not implement callback() and must be declared as abstract.
Any class that inherits Incomplete must implement callback() or be declared abstract itself.

Nested Interfaces

An interface can be declared a member of a class or another interface. Such an interface is
called a member interface or a nested interface. A nested interface can be declared as public,
private, or protected. This differs from a top-level interface, which must either be declared
as public or use the default access level, as previously described. When a nested interface is
used outside of its enclosing scope, it must be qualified by the name of the class or interface
of which it is a member. Thus, outside of the class or interface in which a nested interface is
declared, its name must be fully qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.
class A {

Chapter 9: Packages and Interfaces

// this is a nested interface
public interface NestedIF (

boolean isNotNegative (int x) ;
1

}

// B implements the nested interface.
class B implements A.NestedIF ({
public boolean isNotNegative (int x) {
return x < 0 ? false : true;
}

}

class NestedIFDemo {
public static void main(String argsl[]) {

// use a nested interface reference
A.NestedIF nif = new B();

if (nif.isNotNegative (10))
System.out.println("10 is not negative");
if (nif.isNotNegative (-12))
(

System.out.println("this won't be displayed") ;

}
}

Notice that A defines a member interface called NestedIF and that it is declared public.
Next, B implements the nested interface by specifying

implements A.NestedIF

Notice that the name is fully qualified by the enclosing class’ name. Inside the main()
method, an A.NestedIF reference called nif is created, and it is assigned a reference to a
B object. Because B implements A.NestedIF, this is legal.

Applying Interfaces

To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters, you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list, a
binary tree, and so on. No matter how the stack is implemented, the interface to the stack
remains the same. That is, the methods push() and pop() define the interface to the stack
independently of the details of the implementation. Because the interface to a stack is
separate from its implementation, it is easy to define a stack interface, leaving it to each
implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called IntStack.java.
This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack (
void push(int item); // store an item
int pop(); // retrieve an item

}

197

198

Part I: The Java Language

The following program creates a class called FixedStack that implements a fixed-length
version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {

private int stckl[];

private int tos;

// allocate and initialize stack
FixedStack (int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack
public void push(int item) ({
if (tos==stck.length-1) // use length member
System.out.println("Stack is full.");
else
stck [++tos] = item;
}

// Pop an item from the stack
public int pop() {
if(tos < 0) {
System.out.println("Stack underflow.") ;
return 0;
}
else
return stckl[tos--1;
1

}

class IFTest {
public static void main(String argsl[]) {
FixedStack mystackl = new FixedStack(5);
FixedStack mystack2 = new FixedStack(8) ;

// push some numbers onto the stack
for(int i=0; 1<5; i++) mystackl.push(i);
for(int i=0; 1<8; i++) mystack2.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystackl:");
for (int 1=0; 1<5; i++)

System.out.println (mystackl.pop()) ;

System.out.println("Stack in mystack2:");
for(int i=0; i<8; 1i++)
System.out.println (mystack2.pop()) ;

Chapter 9: Packages and Interfaces

Following is another implementation of IntStack that creates a dynamic stack by use
of the same interface definition. In this implementation, each stack is constructed with an
initial length. If this initial length is exceeded, then the stack is increased in size. Each time
more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.
class DynStack implements IntStack
private int stckl[];
private int tos;

// allocate and initialize stack
DynStack (int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item)
// if stack is full, allocate a larger stack
if (tos==stck.length-1) ({

int temp[] = new int[stck.length * 2]; // double size
for(int i=0; i<stck.length; i++) temp[i] = stck[i];
stck = temp;
stck [++tos] = item;

}

else
stck [++tos] = item;

}

// Pop an item from the stack
public int pop() {
if (tos < 0)
System.out.println("Stack underflow.") ;
return O0;
}
else
return stck[tos--1;
1

}

class IFTest2 {

public static void main(String argsl[]) {

DynStack mystackl = new DynStack(5) ;
DynStack mystack2 = new DynStack (8)

7

// these loops cause each stack to grow
for(int i=0; i1<12; i++) mystackl.push (i) ;
for(int i=0; 1<20; i++) mystack2.push (i) ;

System.out.println("Stack in mystackl:");
for (int 1i=0; 1<12; i++)

System.out .println (mystackl.pop()) ;

System.out.println("Stack in mystack2:");

199

200

Part I: The Java Language

for (int i=0; 1<20; i++)
System.out .println (mystack2.pop()) ;

The following class uses both the FixedStack and DynStack implementations. It does
so through an interface reference. This means that calls to push() and pop() are resolved
at run time rather than at compile time.

/* Create an interface variable and

access stacks through it.
*/
class IFTest3 ({

public static void main(String args[]) {
IntStack mystack; // create an interface reference variable
DynStack ds = new DynStack(5) ;
FixedStack fs = new FixedStack(8) ;

mystack = ds; // load dynamic stack
// push some numbers onto the stack
for(int i=0; i<12; i++) mystack.push(i);

mystack

= fs; // load fixed stack
for (int 1=0;

i<8; i++) mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

for(int i=0; i<12; i++)
System.out .println (mystack.pop()) ;

mystack = fs;
System.out.println("Values in fixed stack:");
for (int i=0; 1<8; i++)
System.out.println (mystack.pop()) ;
}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds,
it uses the versions of push() and pop() defined by the DynStack implementation. When it
refers to fs, it uses the versions of push() and pop() defined by FixedStack. As explained,
these determinations are made at run time. Accessing multiple implementations of an interface
through an interface reference variable is the most powerful way that Java achieves run-time
polymorphism.

Variables in Interfaces

You can use interfaces to import shared constants into multiple classes by simply declaring
an interface that contains variables that are initialized to the desired values. When you
include that interface in a class (that is, when you “implement” the interface), all of those
variable names will be in scope as constants. (This is similar to using a header file in C/C++
to create a large number of #defined constants or const declarations.) If an interface contains
no methods, then any class that includes such an interface doesn’t actually implement anything.

Chapter 9: Packages and Interfaces

It is as if that class were importing the constant fields into the class name space as final
variables. The next example uses this technique to implement an automated “decision maker”:

import java.util.Random;

interface SharedConstants {
int NO = 0;
int YES = 1;
int MAYBE
int LATER =
int SOON = 4;
int NEVER = 5;

}

class Question implements SharedConstants {
Random rand = new Random() ;
int ask()

2;
3

I

int prob = (int) (100 * rand.nextDouble()) ;
if (prob < 30)

return NO; // 30%
else if (prob < 60)

return YES; // 30%
else if (prob < 75)

return LATER; // 15%
else if (prob < 98)

return SOON; // 13%
else

return NEVER; // 2%

}
}

class AskMe implements SharedConstants {
static void answer (int result)
switch(result)

case NO:
System.out.println("No") ;
break;

case YES:
System.out .println("Yes") ;
break;

case MAYBE:
System.out.println ("Maybe") ;
break;

case LATER:
System.out.println("Later") ;
break;

case SOON:
System.out .println ("Soon") ;
break;

case NEVER:
System.out.println ("Never") ;
break;

201

202

Part I: The Java Language

public static void main(String args[]) {

Question g = new Question() ;
answer (q.ask
k

)
answer (q.ask()) ;
answer (q.ask()) ;
answer (g.ask()) ;

}
}

Notice that this program makes use of one of Java’s standard classes: Random. This class
provides pseudorandom numbers. It contains several methods that allow you to obtain
random numbers in the form required by your program. In this example, the method
nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the
SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are
defined. Inside each class, the code refers to these constants as if each class had defined or
inherited them directly. Here is the output of a sample run of this program. Note that the
results are different each time it is run.

Later
Soon
No
Yes

Interfaces Can Be Extended

One interface can inherit another by use of the keyword extends. The syntax is the same as
for inheriting classes. When a class implements an interface that inherits another interface,
it must provide implementations for all methods defined within the interface inheritance
chain. Following is an example:

// One interface can extend another.
interface A {

void methl () ;

void meth2 () ;

}

// B now includes methl () and meth2() -- it adds meth3 ().
interface B extends A {
void meth3 () ;

}

// This class must implement all of A and B
class MyClass implements B {
public void methl () ({
System.out.println("Implement methl().");
}

public void meth2 () ({
System.out .println ("Implement meth2().");
1

public void meth3 () {

Chapter 9: Packages and Interfaces

System.out .println ("Implement meth3().");

}

}

class IFExtend ({
public static void main(String argl]) {
MyClass ob = new MyClass() ;

ob.methl () ;
ob.meth2 () ;
ob.meth3 () ;

As an experiment, you might want to try removing the implementation for meth1() in
MyClass. This will cause a compile-time error. As stated earlier, any class that implements
an interface must implement all methods defined by that interface, including any that are
inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use of packages
or interfaces, both of these tools are an important part of the Java programming environment.
Virtually all real programs that you write in Java will be contained within packages. A number
will probably implement interfaces as well. It is important, therefore, that you be comfortable
with their usage.

203

This page intentionally left blank

CHAPTER
Exception Handling

condition that arises in a code sequence at run time. In other words, an exception is a

run-time error. In computer languages that do not support exception handling, errors
must be checked and handled manually—typically through the use of error codes, and so
on. This approach is as cumbersome as it is troublesome. Java’s exception handling avoids
these problems and, in the process, brings run-time error management into the object-
oriented world.

This chapter examines Java’s exception-handling mechanism. An exception is an abnormal

Exception-Handling Fundamentals

AJava exception is an object that describes an exceptional (that is, error) condition that has
occurred in a piece of code. When an exceptional condition arises, an object representing
that exception is created and thrown in the method that caused the error. That method may
choose to handle the exception itself, or pass it on. Either way, at some point, the exception
is caught and processed. Exceptions can be generated by the Java run-time system, or they
can be manually generated by your code. Exceptions thrown by Java relate to fundamental
errors that violate the rules of the Java language or the constraints of the Java execution
environment. Manually generated exceptions are typically used to report some error condition
to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally. Briefly, here is how they work. Program statements that you want to monitor for
exceptions are contained within a try block. If an exception occurs within the try block, it is
thrown. Your code can catch this exception (using catch) and handle it in some rational manner.
System-generated exceptions are automatically thrown by the Java run-time system. To
manually throw an exception, use the keyword throw. Any exception that is thrown out of
a method must be specified as such by a throws clause. Any code that absolutely must be
executed after a try block completes is put in a finally block.

This is the general form of an exception-handling block:

try {
/ / block of code to monitor for errors

}

205

206 Part I: The Java Language

catch (ExceptionTypel exOD) {
// exception handler for ExceptionTypel

}

catch (ExceptionType2 exOD) {
/ / exception handler for ExceptionType2
}
[/
finally {
/ / block of code to be executed after try block ends
}

Here, ExceptionType is the type of exception that has occurred. The remainder of this chapter
describes how to apply this framework.

Exception Types

All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the
top of the exception class hierarchy. Inmediately below Throwable are two subclasses that
partition exceptions into two distinct branches. One branch is headed by Exception. This class
is used for exceptional conditions that user programs should catch. This is also the class that
you will subclass to create your own custom exception types. There is an important subclass
of Exception, called RuntimeException. Exceptions of this type are automatically defined for
the programs that you write and include things such as division by zero and invalid array
indexing.

The other branch is topped by Error, which defines exceptions that are not expected to
be caught under normal circumstances by your program. Exceptions of type Error are used
by the Java run-time system to indicate errors having to do with the run-time environment,
itself. Stack overflow is an example of such an error. This chapter will not be dealing with
exceptions of type Error, because these are typically created in response to catastrophic failures
that cannot usually be handled by your program.

Uncaught Exceptions

Before you learn how to handle exceptions in your program, it is useful to see what happens
when you don’t handle them. This small program includes an expression that intentionally
causes a divide-by-zero error:

class ExcO {
public static void main(String args[]) {
int d = 0;
int a = 42 / 4;
}
}

When the Java run-time system detects the attempt to divide by zero, it constructs a
new exception object and then throws this exception. This causes the execution of Exc0 to

Chapter 10: Exception Handling

stop, because once an exception has been thrown, it must be caught by an exception handler

and dealt with immediately. In this example, we haven’t supplied any exception handlers of

our own, so the exception is caught by the default handler provided by the Java run-time

system. Any exception that is not caught by your program will ultimately be processed by

the default handler. The default handler displays a string describing the exception, prints a

stack trace from the point at which the exception occurred, and terminates the program.
Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero
at ExcO.main (Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4, are all included in the simple stack trace. Also, notice that the type
of exception thrown is a subclass of Exception called ArithmeticException, which more
specifically describes what type of error happened. As discussed later in this chapter, Java
supplies several built-in exception types that match the various sorts of run-time errors that
can be generated.

The stack trace will always show the sequence of method invocations that led up to
the error. For example, here is another version of the preceding program that introduces the
same error but in a method separate from main():

class Excl {
static void subroutine() {
int d = 0;
int a = 10 / 4;

}

public static void main(String args[]) {
Excl.subroutine () ;

}

The resulting stack trace from the default exception handler shows how the entire call
stack is displayed:

java.lang.ArithmeticException: / by zero
at Excl.subroutine (Excl.java:4)
at Excl.main (Excl.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to subroutine(),
which caused the exception at line 4. The call stack is quite useful for debugging, because it
pinpoints the precise sequence of steps that led to the error.

Using try and catch

Although the default exception handler provided by the Java run-time system is useful for
debugging, you will usually want to handle an exception yourself. Doing so provides two

benefits. First, it allows you to fix the error. Second, it prevents the program from automatically
terminating. Most users would be confused (to say the least) if your program stopped

208

Part I: The Java Language

running and printed a stack trace whenever an error occurred! Fortunately, it is quite easy
to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want
to monitor inside a try block. Immediately following the try block, include a catch clause
that specifies the exception type that you wish to catch. To illustrate how easily this can be
done, the following program includes a try block and a catch clause that processes the
ArithmeticException generated by the division-by-zero error:

class Exc2 {
public static void main(String argsl[]) {
int 4, a;

try { // monitor a block of code.
d = 0;
a = 42 / d4;
System.out .println("This will not be printed.");
} catch (ArithmeticException e) { // catch divide-by-zero error
System.out.println("Division by zero.");

}

System.out.println ("After catch statement.");

This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception
is thrown, program control transfers out of the try block into the catch block. Put differently,
catch is not “called,” so execution never “returns” to the try block from a catch. Thus, the
line “This will not be printed.” is not displayed. Once the catch statement has executed,
program control continues with the next line in the program following the entire try/catch
mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to
those statements specified by the immediately preceding try statement. A catch statement
cannot catch an exception thrown by another try statement (except in the case of nested try
statements, described shortly). The statements that are protected by try must be surrounded
by curly braces. (That is, they must be within a block.) You cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened. For example, in the next
program each iteration of the for loop obtains two random integers. Those two integers are
divided by each other, and the result is used to divide the value 12345. The final result is put
into a. If either division operation causes a divide-by-zero error, it is caught, the value of a is
set to zero, and the program continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError
public static void main(String argsl[]) {

Chapter 10: Exception Handling 209

int a=0, b=0, c=0;
Random r = new Random() ;

for (int i=0; i<32000; i++)

try {
b = r.nextInt();
c = r.nextInt();

a = 12345 / (b/c);

} catch (ArithmeticException e)
System.out.println("Division by zero.");
a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

}
}
}

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a string
containing a description of the exception. You can display this description in a printIn()
statement by simply passing the exception as an argument. For example, the catch block
in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
System.out.println ("Exception: " + e);
a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each divide-by-
zero error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of
an exception is valuable in other circumstances—particularly when you are experimenting
with exceptions or when you are debugging.

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To handle
this type of situation, you can specify two or more catch clauses, each catching a different
type of exception. When an exception is thrown, each catch statement is inspected in order,
and the first one whose type matches that of the exception is executed. After one catch
statement executes, the others are bypassed, and execution continues after the try/catch
block. The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultiCatch {
public static void main(String argsl[]) {
try {

210

Part I: The Java Language

int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int ¢l = { 1 };
c[42] = 99;
} catch(ArithmeticException e)
System.out.println("Divide by 0: " + e);
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println ("Array index oob: " + e);

}

System.out.println ("After try/catch blocks.");

This program will cause a division-by-zero exception if it is started with no command-

line arguments, since a will equal zero. It will survive the division if you provide a
command-line argument, setting a to something larger than zero. But it will cause an
ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program
attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultiCatch

a =20

Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultiCatch TestArg

a =1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception

subclasses must come before any of their superclasses. This is because a catch statement
that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a
subclass would never be reached if it came after its superclass. Further, in Java, unreachable
code is an error. For example, consider the following program:

/* This program contains an error.

A subclass must come before its superclass in
a series of catch statements. If not,
unreachable code will be created and a
compile-time error will result.

class SuperSubCatch {

public static void main(String argsl[]) {
try {
int a = 0;
int b = 42 / a;
} catch(Exception e)

Chapter 10: Exception Handling

System.out.println("Generic Exception catch.");

}

/* This catch is never reached because
ArithmeticException is a subclass of Exception. */

catch (ArithmeticException e) { // ERROR - unreachable
System.out.println("This is never reached.");

}
}
}

If you try to compile this program, you will receive an error message stating that the
second catch statement is unreachable because the exception has already been caught. Since
ArithmeticException is a subclass of Exception, the first catch statement will handle all
Exception-based errors, including ArithmeticException. This means that the second catch
statement will never execute. To fix the problem, reverse the order of the catch statements.

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of another try.
Each time a try statement is entered, the context of that exception is pushed on the stack. If an
inner try statement does not have a catch handler for a particular exception, the stack is

unwound and the next try statement’s catch handlers are inspected for a match. This continues

until one of the catch statements succeeds, or until all of the nested try statements are exhausted.

If no catch statement matches, then the Java run-time system will handle the exception. Here
is an example that uses nested try statements:

// An example of nested try statements.
class NestTry ({
public static void main(String argsl[]) {

try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block
/* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */
if (a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */
if (a==2) {

int ¢l = { 1 };

211

Part I: The Java Language

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {
System.out .println ("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}
}

As you can see, this program nests one try block within another. The program works as
follows. When you execute the program with no command-line arguments, a divide-by-zero
exception is generated by the outer try block. Execution of the program with one command-line
argument generates a divide-by-zero exception from within the nested try block. Since the
inner block does not catch this exception, it is passed on to the outer try block, where it is
handled. If you execute the program with two command-line arguments, an array boundary
exception is generated from within the inner try block. Here are sample runs that illustrate
each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a =1
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two

a = 2

Array index out-of-bounds:
java.lang.ArrayIndexOutOfBoundsException:42

Nesting of try statements can occur in less obvious ways when method calls are involved.
For example, you can enclose a call to a method within a try block. Inside that method is
another try statement. In this case, the try within the method is still nested inside the outer try
block, which calls the method. Here is the previous program recoded so that the nested
try block is moved inside the method nesttry():

/* Try statements can be implicitly nested via
calls to methods. */
class MethNestTry ({
static void nesttry(int a)
try { // nested try block
/* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */
if (a==1) a = a/(a-a); // division by zero

Chapter 10: Exception Handling

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if (a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println ("Array index out-of-bounds: " + e);

}
}

public static void main(String argsl[]) {

try {
int a = args.length;

/* If no command-line args are present,
the following statement will generate
a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

nesttry(a) ;
} catch(ArithmeticException e)
System.out.println("Divide by 0: " + e);

The output of this program is identical to that of the preceding example.

throw

So far, you have only been catching exceptions that are thrown by the Java run-time system.
However, it is possible for your program to throw an exception explicitly, using the throw
statement. The general form of throw is shown here:

throw Throwablelnstance;

Here, Throwablelnstance must be an object of type Throwable or a subclass of Throwable.
Primitive types, such as int or char, as well as non-Throwable classes, such as String and
Object, cannot be used as exceptions. There are two ways you can obtain a Throwable object:
using a parameter in a catch clause, or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected, and
so on. If no matching catch is found, then the default exception handler halts the program
and prints the stack trace.

213

214

Part I: The Java Language

Here is a sample program that creates and throws an exception. The handler that catches
the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
static void demoproc () {
try {
throw new NullPointerException ("demo") ;
} catch(NullPointerException e)
System.out.println ("Caught inside demoproc.");
throw e; // rethrow the exception

}
}

public static void main(String argsl[]) {

try |
demoproc () ;

} catch(NullPointerException e) {
System.out.println("Recaught: " + e);

}
}
}

This program gets two chances to deal with the same error. First, main() sets up an exception
context and then calls demoproc(). The demoproc() method then sets up another exception-
handling context and immediately throws a new instance of NullPointerException, which
is caught on the next line. The exception is then rethrown. Here is the resulting output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay
close attention to this line:

throw new NullPointerException ("demo") ;

Here, new is used to construct an instance of NullPointerException. Many of Java’s built-
in run-time exceptions have at least two constructors: one with no parameter and one that
takes a string parameter. When the second form is used, the argument specifies a string that
describes the exception. This string is displayed when the object is used as an argument to
print() or println(). It can also be obtained by a call to getMessage(), which is defined by
Throwable.

throws

If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You do
this by including a throws clause in the method’s declaration. A throws clause lists the types
of exceptions that a method might throw. This is necessary for all exceptions, except those of

Chapter 10: Exception Handling

type Error or RuntimeException, or any of their subclasses. All other exceptions that a method
can throw must be declared in the throws clause. If they are not, a compile-time error will result.
This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

// body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Following is an example of an incorrect program that tries to throw an exception that it
does not catch. Because the program does not specify a throws clause to declare this fact, the
program will not compile.

// This program contains an error and will not compile.
class ThrowsDemo {
static void throwOne () {
System.out .println("Inside throwOne.") ;
throw new IllegalAccessException("demo") ;
}
public static void main(String argsl[]) {
throwOne () ;
}

}

To make this example compile, you need to make two changes. First, you need to declare
that throwOne() throws Illegal AccessException. Second, main() must define a try/catch
statement that catches this exception.

The corrected example is shown here:

// This is now correct.
class ThrowsDemo {
static void throwOne () throws IllegalAccessException {
System.out.println("Inside throwOne.") ;
throw new IllegalAccessException ("demo") ;
}
public static void main(String args[]) {
try {
throwOne () ;
} catch (IllegalAccessException e) {
System.out.println("Caught " + e);

}
}
}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

215

216

Part I: The Java Language

finally

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path
that alters the normal flow through the method. Depending upon how the method is coded,
it is even possible for an exception to cause the method to return prematurely. This could
be a problem in some methods. For example, if a method opens a file upon entry and
closes it upon exit, then you will not want the code that closes the file to be bypassed
by the exception-handling mechanism. The finally keyword is designed to address this
contingency.

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will
execute whether or not an exception is thrown. If an exception is thrown, the finally
block will execute even if no catch statement matches the exception. Any time a method
is about to return to the caller from inside a try/catch block, via an uncaught exception or
an explicit return statement, the finally clause is also executed just before the method
returns. This can be useful for closing file handles and freeing up any other resources that
might have been allocated at the beginning of a method with the intent of disposing of them
before returning. The finally clause is optional. However, each try statement requires at
least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways, none
without executing their finally clauses:

// Demonstrate finally.
class FinallyDemo
// Through an exception out of the method.
static void procA() {
try {
System.out.println("inside procA") ;
throw new RuntimeException ("demo") ;
} finally {
System.out.println("procA's finally");
}
}

// Return from within a try block.

static void procB() {
try {
System.out.println("inside procB") ;
return;

} finally {
System.out.println("procB's finally");
}
}
// Execute a try block normally.
static void proccC() {
try {

System.out.println("inside procC") ;
} finally {

Chapter 10: Exception Handling 217

System.out.println("procC's finally");
}
}

public static void main(String argsl[]) {

try {
procA() ;

} catch (Exception e) {
System.out.println ("Exception caught") ;

}

procB () ;
procC() ;

}

In this example, procA() prematurely breaks out of the try by throwing an exception.
The finally clause is executed on the way out. procB()’s try statement is exited via a return
statement. The finally clause is executed before procB() returns. In procC(), the try statement
executes normally, without error. However, the finally block is still executed.

REMEMBER If a finally block is associated with a try, the finally block will be executed upon
conclusion of the try.

Here is the output generated by the preceding program:

inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

Java’s Built-in Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few have
been used by the preceding examples. The most general of these exceptions are subclasses
of the standard type RuntimeException. As previously explained, these exceptions need
not be included in any method’s throws list. In the language of Java, these are called
unchecked exceptions because the compiler does not check to see if a method handles or
throws these exceptions. The unchecked exceptions defined in java.lang are listed in
Table 10-1. Table 10-2 lists those exceptions defined by java.lang that must be included

in a method’s throws list if that method can generate one of these exceptions and does
not handle it itself. These are called checked exceptions. Java defines several other types

of exceptions that relate to its various class libraries.

218

Part I:

The Java Language

Exception

Meaning

ArithmeticException

Arithmetic error, such as divide-by-zero.

ArraylndexOutOfBoundsException

Array index is out-of-bounds.

ArrayStoreException

Assignment to an array element of an incompatible type.

ClassCastException

Invalid cast.

EnumConstantNotPresentException

An attempt is made to use an undefined enumeration value.

IllegalArgumentException

Illegal argument used to invoke a method.

lllegalMonitorStateException

Illegal monitor operation, such as waiting on an unlocked
thread.

lllegalStateException

Environment or application is in incorrect state.

lllegalThreadStateException

Requested operation not compatible with current thread
state.

IndexOutOfBoundsException

Some type of index is out-of-bounds.

NegativeArraySizeException

Array created with a negative size.

NullPointerException

Invalid use of a null reference.

NumberFormatException

Invalid conversion of a string to a numeric format.

SecurityException

Attempt to violate security.

StringIndexOutOfBounds

Attempt to index outside the bounds of a string.

TypeNotPresentException

Type not found.

UnsupportedOperationException

An unsupported operation was encountered.

TABLE 10-1

Java’s Unchecked RuntimeException Subclasses Defined in java.lang

Exception

Meaning

ClassNotFoundException

Class not found.

CloneNotSupportedException

Attempt to clone an object that does not implement the Cloneable
interface.

lllegalAccessException

Access to a class is denied.

InstantiationException

Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.
NoSuchFieldException A requested field does not exist.
NoSuchMethodException A requested method does not exist.

TABLE 10-2 Java’'s Checked Exceptions Defined in java.lang

Chapter 10:

Exception Handling 219

Creating Your Own Exception Subclasses

Although Java’s built-in exceptions handle most common errors, you will probably want
to create your own exception types to handle situations specific to your applications. This
is quite easy to do: just define a subclass of Exception (which is, of course, a subclass of
Throwable). Your subclasses don't need to actually implement anything—it is their existence
in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable. Thus, all exceptions, including those that you create,
have the methods defined by Throwable available to them. They are shown in Table 10-3.

Method

Description

Throwable fillinStackTrace()

Returns a Throwable object that contains a completed
stack trace. This object can be rethrown.

Throwable getCause()

Returns the exception that underlies the current
exception. If there is no underlying exception, null
is returned.

String getLocalizedMessage()

Returns a localized description of the exception.

String getMessage()

Returns a description of the exception.

StackTraceElement[] getStackTrace()

Returns an array that contains the stack trace, one
element at a time, as an array of StackTraceElement.
The method at the top of the stack is the last method
called before the exception was thrown. This method
is found in the first element of the array. The
StackTraceElement class gives your program access
to information about each element in the trace, such
as its method name.

Throwable initCause(Throwable
causeExc)

Associates causeExc with the invoking exception as a
cause of the invoking exception. Returns a reference
to the exception.

void printStackTrace()

Displays the stack trace.

void printStackTrace(PrintStream
stream)

Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter
stream)

Sends the stack trace to the specified stream.

void setStackTrace(StackTraceElement
elements|])

Sets the stack trace to the elements passed in
elements. This method is for specialized applications,
not normal use.

String toString()

Returns a String object containing a description of the
exception. This method is called by printin() when
outputting a Throwable object.

TABLE 10-3

The Methods Defined by Throwable

220

Part I: The Java Language

You may also wish to override one or more of these methods in exception classes that you
create.

Exception defines four constructors. Two were added by JDK 1.4 to support chained
exceptions, described in the next section. The other two are shown here:

Exception()
Exception(String misg)

The first form creates an exception that has no description. The second form lets you specify
a description of the exception.

Although specifying a description when an exception is created is often useful, sometimes
it is better to override toString(). Here’s why: The version of toString() defined by Throwable
(and inherited by Exception) first displays the name of the exception followed by a colon, which
is then followed by your description. By overriding toString(), you can prevent the exception
name and colon from being displayed. This makes for a cleaner output, which is desirable in
some cases.

The following example declares a new subclass of Exception and then uses that subclass
to signal an error condition in a method. It overrides the toString() method, allowing a
carefully tailored description of the exception to be displayed.

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;

MyException (int a) {
detail = a;
1

public String toString()
return "MyException[" + detail + "]";
}

}

class ExceptionDemo {
static void compute (int a) throws MyException {
System.out.println("Called compute(" + a + ")");
if(a > 10)
throw new MyException(a) ;
System.out.println ("Normal exit") ;

}

public static void main(String argsl[]) {
try {
compute (1) ;
compute (20) ;
} catch (MyException e) ({
System.out.println("Caught " + e);

This example defines a subclass of Exception called MyException. This subclass is quite
simple: it has only a constructor plus an overloaded toString() method that displays the

Chapter 10: Exception Handling 221

value of the exception. The ExceptionDemo class defines a method named compute() that
throws a MyException object. The exception is thrown when compute()’s integer parameter
is greater than 10. The main() method sets up an exception handler for MyException, then
calls compute() with a legal value (less than 10) and an illegal one to show both paths through
the code. Here is the result:

Called compute (1)
Normal exit

Called compute (20)
Caught MyException[20]

Chained Exceptions

Beginning with JDK 1.4, a new feature has been incorporated into the exception subsystem:
chained exceptions. The chained exception feature allows you to associate another exception
with an exception. This second exception describes the cause of the first exception. For example,
imagine a situation in which a method throws an ArithmeticException because of an attempt
to divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let the
calling code know that the underlying cause was an I/O error. Chained exceptions let you
handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to Throwable.
The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is, causeExc
is the underlying reason that an exception occurred. The second form allows you to specify
a description at the same time that you specify a cause exception. These two constructors
have also been added to the Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown in Table 10-3 and are repeated here for the sake of discussion.

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception. If there
is no underlying exception, null is returned. The initCause() method associates causeExc with
the invoking exception and returns a reference to the exception. Thus, you can associate a
cause with an exception after the exception has been created. However, the cause exception
can be set only once. Thus, you can call initCause() only once for each exception object.
Furthermore, if the cause exception was set by a constructor, then you can’t set it again
using initCause(). In general, initCause() is used to set a cause for legacy exception classes
that don’t support the two additional constructors described earlier.

Here is an example that illustrates the mechanics of handling chained exceptions:

// Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc () {

222

Part I: The Java Language

// create an exception
NullPointerException e =
new NullPointerException ("top layer");

// add a cause
e.initCause (new ArithmeticException ("cause")) ;

throw e;

}

public static void main(String argsl[]) ({

try {
demoproc () ;

} catch(NullPointerException e)
// display top level exception
System.out.println("Caught: " + e);

// display cause exception
System.out.println("Original cause: " +
e.getCause()) ;

The output from the program is shown here:

Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added a cause
exception, ArithmeticException. When the exception is thrown out of demoproc(), it is
caught by main(). There, the top-level exception is displayed, followed by the underlying
exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause
exception can, itself, have a cause. Be aware that overly long chains of exceptions may
indicate poor design.

Chained exceptions are not something that every program will need. However, in cases
in which knowledge of an underlying cause is useful, they offer an elegant solution.

Using Exceptions

Exception handling provides a powerful mechanism for controlling complex programs that
have many dynamic run-time characteristics. It is important to think of try, throw, and catch
as clean ways to handle errors and unusual boundary conditions in your program’s logic.
Unlike some other languages in which error return codes are used to indicate failure, Java
uses exceptions. Thus, when a method can fail, have it throw an exception. This is a cleaner
way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a general
mechanism for nonlocal branching. If you do so, it will only confuse your code and make it
hard to maintain.

CHAPTER
Multithreaded Programming

programming. A multithreaded program contains two or more parts that can run
concurrently. Each part of such a program is called a thread, and each thread defines
a separate path of execution. Thus, multithreading is a specialized form of multitasking.

You are almost certainly acquainted with multitasking, because it is supported by virtually
all modern operating systems. However, there are two distinct types of multitasking: process-
based and thread-based. It is important to understand the difference between the two. For
most readers, process-based multitasking is the more familiar form. A process is, in essence,
a program that is executing. Thus, process-based multitasking is the feature that allows your
computer to run two or more programs concurrently. For example, process-based multitasking
enables you to run the Java compiler at the same time that you are using a text editor. In process-
based multitasking, a program is the smallest unit of code that can be dispatched by the
scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable
code. This means that a single program can perform two or more tasks simultaneously. For
instance, a text editor can format text at the same time that it is printing, as long as these
two actions are being performed by two separate threads. Thus, process-based multitasking
deals with the “big picture,” and thread-based multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes are
heavyweight tasks that require their own separate address spaces. Interprocess communication
is expensive and limited. Context switching from one process to another is also costly. Threads,
on the other hand, are lightweight. They share the same address space and cooperatively
share the same heavyweight process. Interthread communication is inexpensive, and context
switching from one thread to the next is low cost. While Java programs make use of process-
based multitasking environments, process-based multitasking is not under the control of
Java. However, multithreaded multitasking is.

Multithreading enables you to write very efficient programs that make maximum use of
the CPU, because idle time can be kept to a minimum. This is especially important for the
interactive, networked environment in which Java operates, because idle time is common.
For example, the transmission rate of data over a network is much slower than the rate at
which the computer can process it. Even local file system resources are read and written at a
much slower pace than they can be processed by the CPU. And, of course, user input is much
slower than the computer. In a single-threaded environment, your program has to wait for

223

Unlike many other computer languages, Java provides built-in support for multithreaded

224

Part I: The Java Language

each of these tasks to finish before it can proceed to the next one—even though the CPU is
sitting idle most of the time. Multithreading lets you gain access to this idle time and put it
to good use.

If you have programmed for operating systems such as Windows, then you are already
familiar with multithreaded programming. However, the fact that Java manages threads makes
multithreading especially convenient, because many of the details are handled for you.

The Java Thread Model

The Java run-time system depends on threads for many things, and all the class libraries
are designed with multithreading in mind. In fact, Java uses threads to enable the entire
environment to be asynchronous. This helps reduce inefficiency by preventing the waste
of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its counterpart.
Single-threaded systems use an approach called an event loop with polling. In this model, a
single thread of control runs in an infinite loop, polling a single event queue to decide what
to do next. Once this polling mechanism returns with, say, a signal that a network file is
ready to be read, then the event loop dispatches control to the appropriate event handler.
Until this event handler returns, nothing else can happen in the system. This wastes CPU
time. It can also result in one part of a program dominating the system and preventing any
other events from being processed. In general, in a singled-threaded environment, when a
thread blocks (that is, suspends execution) because it is waiting for some resource, the entire
program stops running.

The benefit of Java’s multithreading is that the main loop /polling mechanism is eliminated.
One thread can pause without stopping other parts of your program. For example, the idle
time created when a thread reads data from a network or waits for user input can be utilized
elsewhere. Multithreading allows animation loops to sleep for a second between each frame
without causing the whole system to pause. When a thread blocks in a Java program, only
the single thread that is blocked pauses. All other threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as soon as
it gets CPU time. A running thread can be suspended, which temporarily suspends its activity.
A suspended thread can then be resumed, allowing it to pick up where it left off. A thread
can be blocked when waiting for a resource. At any time, a thread can be terminated, which
halts its execution immediately. Once terminated, a thread cannot be resumed.

Thread Priorities

Java assigns to each thread a priority that determines how that thread should be treated
with respect to the others. Thread priorities are integers that specify the relative priority
of one thread to another. As an absolute value, a priority is meaningless; a higher-priority
thread doesn’t run any faster than a lower-priority thread if it is the only thread running.
Instead, a thread’s priority is used to decide when to switch from one running thread to
the next. This is called a context switch. The rules that determine when a context switch
takes place are simple:

Chapter 11: Multithreaded Programming

o A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping,
or blocking on pending I/O. In this scenario, all other threads are examined, and the
highest-priority thread that is ready to run is given the CPU.

o A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread
that does not yield the processor is simply preempted—no matter what it is doing—
by a higher-priority thread. Basically, as soon as a higher-priority thread wants to
run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows, threads of equal
priority are time-sliced automatically in round-robin fashion. For other types of operating
systems, threads of equal priority must voluntarily yield control to their peers. If they don't,
the other threads will not run.

CAUTION Portability problems can arise from the differences in the way that operating systems
context-switch threads of equal priority.

Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there must be
a way for you to enforce synchronicity when you need it. For example, if you want two threads
to communicate and share a complicated data structure, such as a linked list, you need some
way to ensure that they don’t conflict with each other. That is, you must prevent one thread
from writing data while another thread is in the middle of reading it. For this purpose, Java
implements an elegant twist on an age-old model of interprocess synchronization: the monitor.
The monitor is a control mechanism first defined by C.A.R. Hoare. You can think of a monitor
as a very small box that can hold only one thread. Once a thread enters a monitor, all other
threads must wait until that thread exits the monitor. In this way, a monitor can be used to
protect a shared asset from being manipulated by more than one thread at a time.

Most multithreaded systems expose monitors as objects that your program must explicitly
acquire and manipulate. Java provides a cleaner solution. There is no class “Monitor”; instead,
each object has its own implicit monitor that is automatically entered when one of the object’s
synchronized methods is called. Once a thread is inside a synchronized method, no other
thread can call any other synchronized method on the same object. This enables you to write
very clear and concise multithreaded code, because synchronization support is built into the
language.

Messaging

After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with most other languages, you must
depend on the operating system to establish communication between threads. This, of
course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more
threads to talk to each other, via calls to predefined methods that all objects have. Java’s
messaging system allows a thread to enter a synchronized method on an object, and then
wait there until some other thread explicitly notifies it to come out.

225

226

The

Part I: The Java Language

The Thread Class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods, and its companion
interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly refer
to the ethereal state of a running thread, you will deal with it through its proxy, the Thread
instance that spawned it. To create a new thread, your program will either extend Thread or
implement the Runnable interface.

The Thread class defines several methods that help manage threads. The ones that will
be used in this chapter are shown here:

Method Meaning
getName Obtain a thread’s name.

getPriority |Obtain a thread’s priority.

isAlive Determine if a thread is still running.
join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.
start Start a thread by calling its run method.

Thus far, all the examples in this book have used a single thread of execution. The remainder
of this chapter explains how to use Thread and Runnable to create and manage threads,
beginning with the one thread that all Java programs have: the main thread.

Main Thread

When a Java program starts up, one thread begins running immediately. This is usually
called the main thread of your program, because it is the one that is executed when your
program begins. The main thread is important for two reasons:

¢]t is the thread from which other “child” threads will be spawned.

e Often, it must be the last thread to finish execution because it performs various
shutdown actions.

Although the main thread is created automatically when your program is started, it can
be controlled through a Thread object. To do so, you must obtain a reference to it by calling
the method currentThread(), which is a public static member of Thread. Its general form is
shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a reference
to the main thread, you can control it just like any other thread.
Let’s begin by reviewing the following example:

Chapter 11: Multithreaded Programming

// Controlling the main Thread.
class CurrentThreadDemo
public static void main(String argsl[]) {
Thread t = Thread.currentThread() ;

System.out.println ("Current thread: " + t);

// change the name of the thread
t.setName ("My Thread") ;

System.out .println ("After name change: " + t);
try {
for(int n = 5; n > 0; n--) {

System.out.println(n) ;
Thread.sleep(1000) ;

}

} catch (InterruptedException e) {
System.out.println("Main thread interrupted");
}

}
}

In this program, a reference to the current thread (the main thread, in this case) is obtained
by calling currentThread(), and this reference is stored in the local variable t. Next, the program
displays information about the thread. The program then calls setName() to change the
internal name of the thread. Information about the thread is then redisplayed. Next, a loop
counts down from five, pausing one second between each line. The pause is accomplished
by the sleep() method. The argument to sleep() specifies the delay period in milliseconds.
Notice the try/catch block around this loop. The sleep() method in Thread might throw
an InterruptedException. This would happen if some other thread wanted to interrupt this
sleeping one. This example just prints a message if it gets interrupted. In a real program, you
would need to handle this differently. Here is the output generated by this program:

Current thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]
5

N W s

Notice the output produced when t is used as an argument to println(). This displays, in
order: the name of the thread, its priority, and the name of its group. By default, the name
of the main thread is main. Its priority is 5, which is the default value, and main is also the
name of the group of threads to which this thread belongs. A thread group is a data structure
that controls the state of a collection of threads as a whole. After the name of the thread is
changed, t is again output. This time, the new name of the thread is displayed.

221

228

Part I: The Java Language

Let’s look more closely at the methods defined by Thread that are used in the program.
The sleep() method causes the thread from which it is called to suspend execution for the
specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws Interrupted Exception

The number of milliseconds to suspend is specified in milliseconds. This method may throw
an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify the
period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short as
nanoseconds.

As the preceding program shows, you can set the name of a thread by using setName().
You can obtain the name of a thread by calling getName() (but note that this is not shown in
the program). These methods are members of the Thread class and are declared like this:

final void setName(String threadName)

final String getName()

Here, threadName specifies the name of the thread.

Creating a Thread

In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

® You can implement the Runnable interface.

® You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable interface.
Runnable abstracts a unit of executable code. You can construct a thread on any object that
implements Runnable. To implement Runnable, a class need only implement a single method
called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just
like the main thread can. The only difference is that run() establishes the entry point for
another, concurrent thread of execution within your program. This thread will end when
run() returns.

Chapter 11: Multithreaded Programming 229

After you create a class that implements Runnable, you will instantiate an object of type
Thread from within that class. Thread defines several constructors. The one that we will use
is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable interface.
This defines where execution of the thread will begin. The name of the new thread is specified
by threadName.

After the new thread is created, it will not start running until you call its start() method,
which is declared within Thread. In essence, start() executes a call to run(). The start()
method is shown here:

void start()
Here is an example that creates a new thread and starts it running;:

// Create a second thread.
class NewThread implements Runnable {
Thread t;

NewThread () {
// Create a new, second thread
t = new Thread(this, "Demo Thread") ;
System.out .println("Child thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for the second thread.
public void run() {
try {
for(int 1 = 5; i > 0; i--) {
System.out .println("Child Thread: " + 1i);
Thread.sleep(500) ;
}
} catch (InterruptedException e)
System.out.println("Child interrupted.");
}
System.out .println ("Exiting child thread.");
}
}

class ThreadDemo
public static void main(String argsl[]) {

new NewThread(); // create a new thread
try {
for(int 1 = 5; i > 0; i--) {
System.out .println("Main Thread: " + 1i);
Thread.sleep(1000) ;
}

} catch (InterruptedException e)

230

Part I: The Java Language

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}
}

Inside NewThread’s constructor, a new Thread object is created by the following
statement:

t = new Thread(this, "Demo Thread") ;

Passing this as the first argument indicates that you want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution beginning
at the run() method. This causes the child thread’s for loop to begin. After calling start(),
NewThread’s constructor returns to main(). When the main thread resumes, it enters its for
loop. Both threads continue running, sharing the CPU, until their loops finish. The output
produced by this program is as follows. (Your output may vary based on processor speed
and task load.)

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5

Child Thread: 5
Child Thread: 4

Main Thread: 4

Child Thread: 3
Child Thread: 2

Main Thread: 3

Child Thread: 1
Exiting child thread.
Main Thread: 2

Main Thread: 1

Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be the
last thread to finish running. In fact, for some older JVMs, if the main thread finishes before
a child thread has completed, then the Java run-time system may “hang.” The preceding
program ensures that the main thread finishes last, because the main thread sleeps for 1,000
milliseconds between iterations, but the child thread sleeps for only 500 milliseconds. This
causes the child thread to terminate earlier than the main thread. Shortly, you will see a
better way to wait for a thread to finish.

Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which
is the entry point for the new thread. It must also call start() to begin execution of the new
thread. Here is the preceding program rewritten to extend Thread:

Chapter 11: Multithreaded Programming 231

// Create a second thread by extending Thread
class NewThread extends Thread {

NewThread () {
// Create a new, second thread
super ("Demo Thread") ;
System.out .println("Child thread: " + this);
start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {
try {
for(int 1 = 5; i > 0; i--) {
System.out.println("Child Thread: " + 1i);

Thread.sleep(500) ;
}
} catch (InterruptedException e)
System.out.println("Child interrupted.");
}
System.out .println ("Exiting child thread.");
}
}

class ExtendThread
public static void main(String argsl[]) {

new NewThread(); // create a new thread
try {
for(int 1 = 5; i > 0; i--) {
System.out.println("Main Thread: " + 1i);

Thread.sleep(1000) ;

}

} catch (InterruptedException e)
System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}
}

This program generates the same output as the preceding version. As you can see, the child
thread is created by instantiating an object of NewThread, which is derived from Thread.

Notice the call to super() inside NewThread. This invokes the following form of the
Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

232 Part I: The Java Language

Choosing an Approach

At this point, you might be wondering why Java has two ways to create child threads, and
which approach is better. The answers to these questions turn on the same point. The Thread
class defines several methods that can be overridden by a derived class. Of these methods,
the only one that must be overridden is run(). This is, of course, the same method required
when you implement Runnable. Many Java programmers feel that classes should be
extended only when they are being enhanced or modified in some way. So, if you will not
be overriding any of Thread’s other methods, it is probably best simply to implement
Runnable. This is up to you, of course. However, throughout the rest of this chapter, we
will create threads by using classes that implement Runnable.

Creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread. However,
your program can spawn as many threads as it needs. For example, the following program
creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread (String threadname) {
name = threadname;
t = new Thread(this, name) ;
System.out .println ("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {
try {
for(int 1 = 5; i > 0; i--) {
System.out.println(name + ": " + i);

Thread.sleep(1000) ;

}

} catch (InterruptedException e)
System.out.println(name + "Interrupted") ;

}

System.out.println(name + " exiting.");

}
}

class MultiThreadDemo
public static void main(String argsl[]) {
new NewThread("One"); // start threads
new NewThread ("Two") ;
new NewThread ("Three") ;

Chapter 11: Multithreaded Programming 233

try {
// wait for other threads to end
Thread.sleep(10000) ;

} catch (InterruptedException e)
System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

The output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]

One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Three: 3
Two: 3
One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to
sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures
that it will finish last.

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding examples,
this is accomplished by calling sleep() within main(), with a long enough delay to ensure
that all child threads terminate prior to the main thread. However, this is hardly a satisfactory
solution, and it also raises a larger question: How can one thread know when another thread
has ended? Fortunately, Thread provides a means by which you can answer this question.

234

Part I: The Java Language

Two ways exist to determine whether a thread has finished. First, you can call isAlive()
on the thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns
false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to
wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the
concept of the calling thread waiting until the specified thread joins it. Additional forms of
join() allow you to specify a maximum amount of time that you want to wait for the specified
thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure that the
main thread is the last to stop. It also demonstrates the isAlive() method.

// Using join() to wait for threads to finish.
class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread (String threadname) {
name = threadname;
t = new Thread(this, name) ;
System.out.println("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {
try {
for(int 1 = 5; i > 0; i--) {
System.out.println(name + ": " + 1i);

Thread.sleep(1000) ;
1
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");
}

System.out.println(name + " exiting.");

}
}

class DemoJoin {
public static void main(String argsl[]) {
NewThread obl = new NewThread("One") ;
NewThread ob2 = new NewThread ("Two") ;
NewThread ob3 = new NewThread ("Three") ;

Chapter 11: Multithreaded Programming

System.out.println ("Thread One is alive: "
+ obl.t.isAlive()) ;
System.out.println ("Thread Two is alive: "
+ ob2.t.isAlive()) ;
System.out.println ("Thread Three is alive: "
+ ob3.t.isAlive()) ;
// wait for threads to finish
try {
System.out.println("Waiting for threads to finish.");
obl.t.join() ;
ob2.t.join() ;
ob3.t.join() ;
} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");
}

System.out.println ("Thread One is alive: "

+ obl.t.isAlive()) ;
System.out.println ("Thread Two is alive: "

+ ob2.t.isAlive()) ;
System.out.println("Thread Three is alive: "

+ ob3.t.isAlive()) ;

System.out.println("Main thread exiting.");

}
}

Sample output from this program is shown here. (Your output may vary based on processor
speed and task load.)

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.

One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2

Three: 2

235

236

Part I: The Java Language

One: 1
Two: 1
Three: 1

Two exiting.

Three exiting.

One exiting.

Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities

Thread priorities are used by the thread scheduler to decide when each thread should be
allowed to run. In theory, higher-priority threads get more CPU time than lower-priority
threads. In practice, the amount of CPU time that a thread gets often depends on several
factors besides its priority. (For example, how an operating system implements multitasking
can affect the relative availability of CPU time.) A higher-priority thread can also preempt a
lower-priority one. For instance, when a lower-priority thread is running and a higher-priority
thread resumes (from sleeping or waiting on I/O, for example), it will preempt the lower-
priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need to
be careful. Remember, Java is designed to work in a wide range of environments. Some of
those environments implement multitasking fundamentally differently than others. For safety,
threads that share the same priority should yield control once in a while. This ensures that
all threads have a chance to run under a nonpreemptive operating system. In practice, even
in nonpreemptive environments, most threads still get a chance to run, because most threads
inevitably encounter some blocking situation, such as waiting for I/O. When this happens,
the blocked thread is suspended and other threads can run. But, if you want smooth
multithreaded execution, you are better off not relying on this. Also, some types of tasks
are CPU-intensive. Such threads dominate the CPU. For these types of threads, you want
to yield control occasionally so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.
This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be
within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and
10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is
currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread,
shown here:

final int getPriority()

Chapter 11: Multithreaded Programming

Implementations of Java may have radically different behavior when it comes to scheduling.
The Windows XP/98/NT /2000 versions work, more or less, as you would expect. However,
other versions may work quite differently. Most of the inconsistencies arise when you have
threads that are relying on preemptive behavior, instead of cooperatively giving up CPU
time. The safest way to obtain predictable, cross-platform behavior with Java is to use threads
that voluntarily give up control of the CPU.

The following example demonstrates two threads at different priorities, which do not
run on a preemptive platform in the same way as they run on a nonpreemptive platform.
One thread is set two levels above the normal priority, as defined by Thread. NORM_
PRIORITY, and the other is set to two levels below it. The threads are started and allowed
to run for ten seconds. Each thread executes a loop, counting the number of iterations. After
ten seconds, the main thread stops both threads. The number of times that each thread made
it through the loop is then displayed.

// Demonstrate thread priorities.
class clicker implements Runnable {
long click = 0;
Thread t;
private volatile boolean running = true;

public clicker(int p) {
t = new Thread(this) ;
t.setPriority(p);

}

public void run() {
while (running) {
click++;

}
}

public void stop() {
running = false;
}

public void start() {
t.start();
}

}

class HiLoPri ({
public static void main(String argsl[]) {
Thread.currentThread () .setPriority (Thread.MAX PRIORITY) ;
clicker hi = new clicker (Thread.NORM PRIORITY + 2);
clicker lo = new clicker (Thread.NORM PRIORITY - 2);

lo.start () ;
hi.start();
try {
Thread.sleep(10000) ;
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}

231

238

Part I: The Java Language

lo.stop () ;
hi.stop() ;

// Wait for child threads to terminate.

try {
hi.t.join();
lo.t.join() ;

} catch (InterruptedException e) {
System.out.println ("InterruptedException caught") ;

}

System.out.println ("Low-priority thread: " + lo.click);
System.out.println ("High-priority thread: " + hi.click);

The output of this program, shown as follows when run under Windows, indicates that
the threads did context switch, even though neither voluntarily yielded the CPU nor blocked
for I/O. The higher-priority thread got the majority of the CPU time.

Low-priority thread: 4408112
High-priority thread: 589626904

Of course, the exact output produced by this program depends on the speed of your CPU
and the number of other tasks running in the system. When this same program is run under
a nonpreemptive system, different results will be obtained.

One other note about the preceding program. Notice that running is preceded by the
keyword volatile. Although volatile is examined more carefully in Chapter 13, it is used
here to ensure that the value of running is examined each time the following loop iterates:

while (running) {
click++;

}

Without the use of volatile, Java is free to optimize the loop in such a way that a local copy
of running is created. The use of volatile prevents this optimization, telling Java that running
may change in ways not directly apparent in the immediate code.

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure
that the resource will be used by only one thread at a time. The process by which this is
achieved is called synchronization. As you will see, Java provides unique, language-level
support for it.

Key to synchronization is the concept of the monitor (also called a semaphore). A monitor
is an object that is used as a mutually exclusive lock, or mutex. Only one thread can own a
monitor at a given time. When a thread acquires a lock, it is said to have entered the monitor.
All other threads attempting to enter the locked monitor will be suspended until the first
thread exits the monitor. These other threads are said to be waiting for the monitor. A thread
that owns a monitor can reenter the same monitor if it so desires.

Chapter 11: Multithreaded Programming

If you have worked with synchronization when using other languages, such as C or C++,
you know that it can be a bit tricky to use. This is because these languages do not, themselves,
support synchronization. Instead, to synchronize threads, your programs need to utilize
operating system primitives. Fortunately, because Java implements synchronization through
language elements, most of the complexity associated with synchronization has been
eliminated.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor associated
with them. To enter an object’s monitor, just call a method that has been modified with the
synchronized keyword. While a thread is inside a synchronized method, all other threads
that try to call it (or any other synchronized method) on the same instance have to wait. To
exit the monitor and relinquish control of the object to the next waiting thread, the owner of
the monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does
not use it—but should. The following program has three simple classes. The first one, Callme,
has a single method named call(). The call() method takes a String parameter called msg.
This method tries to print the msg string inside of square brackets. The interesting thing
to notice is that after call() prints the opening bracket and the msg string, it calls Thread
.sleep(1000), which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme
class and a String, which are stored in target and msg, respectively. The constructor also creates
anew thread that will call this object’s run() method. The thread is started immediately. The
run() method of Caller calls the call() method on the target instance of Callme, passing in
the msg string. Finally, the Synch class starts by creating a single instance of Callme, and
three instances of Caller, each with a unique message string. The same instance of Callme
is passed to each Caller.

// This program is not synchronized.
class Callme {
void call (String msg) {
System.out.print (" [" + msg) ;
try {
Thread.sleep(1000) ;
} catch(InterruptedException e) {
System.out.println("Interrupted") ;
}
System.out.println("]") ;
}
}

class Caller implements Runnable {
String msg;
Callme target;
Thread t;

239

240 Part I: The Java Language

public Caller(Callme targ, String s)
target = targ;

msg = s;
t = new Thread(this) ;
t.start();

1

public void run() {

target.call (msg) ;
1
}

class Synch {
public static void main(String argsl[]) {
Callme target = new Callme() ;
Caller obl = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized") ;
Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {
obl.t.join() ;

ob2.t.join() ;
ob3.t.join() ;

} catch(InterruptedException e)
System.out .println("Interrupted") ;

}
}
}

Here is the output produced by this program:

Hello [Synchronized [World]
]
]

As you can see, by calling sleep(), the call() method allows execution to switch to another
thread. This results in the mixed-up output of the three message strings. In this program,
nothing exists to stop all three threads from calling the same method, on the same object, at
the same time. This is known as a race condition, because the three threads are racing each
other to complete the method. This example used sleep() to make the effects repeatable and
obvious. In most situations, a race condition is more subtle and less predictable, because
you can’t be sure when the context switch will occur. This can cause a program to run right
one time and wrong the next.

To fix the preceding program, you must serialize access to call(). That is, you must restrict its
access to only one thread at a time. To do this, you simply need to precede call()’s definition
with the keyword synchronized, as shown here:

class Callme {
synchronized void call (String msg) {

Chapter 11: Multithreaded Programming

This prevents other threads from entering call() while another thread is using it. After
synchronized has been added to call(), the output of the program is as follows:

[Hello]
[Synchronized]
[World]

Any time that you have a method, or group of methods, that manipulates the internal
state of an object in a multithreaded situation, you should use the synchronized keyword
to guard the state from race conditions. Remember, once a thread enters any synchronized
method on an instance, no other thread can enter any other synchronized method on the same
instance. However, nonsynchronized methods on that instance will continue to be callable.

The synchronized Statement

While creating synchronized methods within classes that you create is an easy and effective
means of achieving synchronization, it will not work in all cases. To understand why, consider
the following. Imagine that you want to synchronize access to objects of a class that was not
designed for multithreaded access. That is, the class does not use synchronized methods.
Further, this class was not created by you, but by a third party, and you do not have access
to the source code. Thus, you can’t add synchronized to the appropriate methods within
the class. How can access to an object of this class be synchronized? Fortunately, the solution
to this problem is quite easy: You simply put calls to the methods defined by this class inside
a synchronized block.

This is the general form of the synchronized statement:

synchronized (object) {
/ / statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures
that a call to a method that is a member of object occurs only after the current thread has
successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method:

// This program uses a synchronized block.
class Callme {
void call (String msg) {
System.out.print (" [" + msg) ;
try {
Thread.sleep(1000) ;
} catch (InterruptedException e)
System.out.println("Interrupted") ;
}
System.out.println("]") ;
}
}

class Caller implements Runnable {
String msg;

241

242

Part I: The Java Language

Callme target;
Thread t;

public Caller(Callme targ, String s)
target = targ;
msg = S;
t = new Thread(this) ;
t.start () ;

}

// synchronize calls to call()
public void run() {
synchronized (target) { // synchronized block
target.call (msg) ;
}
}
}

class Synchl {
public static void main(String argsl[]) {
Callme target = new Callme() ;
Caller obl = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized") ;
Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {
obl.t.join() ;
ob2.t.join() ;
ob3.t.join() ;

} catch(InterruptedException e)
System.out.println("Interrupted") ;

}

1
}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output as the
preceding example, because each thread waits for the prior one to finish before proceeding.

Interthread Communication

The preceding examples unconditionally blocked other threads from asynchronous access
to certain methods. This use of the implicit monitors in Java objects is powerful, but you can
achieve a more subtle level of control through interprocess communication. As you will see,
this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing your
tasks into discrete, logical units. Threads also provide a secondary benefit: they do away
with polling. Polling is usually implemented by a loop that is used to check some condition
repeatedly. Once the condition is true, appropriate action is taken. This wastes CPU time.
For example, consider the classic queuing problem, where one thread is producing some
data and another is consuming it. To make the problem more interesting, suppose that the
producer has to wait until the consumer is finished before it generates more data. In a polling

Chapter 11: Multithreaded Programming

system, the consumer would waste many CPU cycles while it waited for the producer to
produce. Once the producer was finished, it would start polling, wasting more CPU cycles
waiting for the consumer to finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via
the wait(), notify(), and notifyAll() methods. These methods are implemented as final
methods in Object, so all classes have them. All three methods can be called only from
within a synchronized context. Although conceptually advanced from a computer science
perspective, the rules for using these methods are actually quite simple:

® wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify().

* notify() wakes up a thread that called wait() on the same object.

¢ notifyAll() wakes up all the threads that called wait() on the same object. One of
the threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException
final void notify()
final void notifyAll()

Additional forms of wait() exist that allow you to specify a period of time to wait.

Before working through an example that illustrates interthread communication, an
important point needs to be made. Although wait() normally waits until notify() or
notifyAll() is called, there is a possibility that in very rare cases the waiting thread could be
awakened due to a spurious wakeup. In this case, a waiting thread resumes without notify()
or notifyAll() having been called. (In essence, the thread resumes for no apparent reason.)
Because of this remote possibility, Sun recommends that calls to wait() should take place
within a loop that checks the condition on which the thread is waiting. The following
example shows this technique.

Let’s now work through an example that uses wait() and notify(). To begin, consider
the following sample program that incorrectly implements a simple form of the producer/
consumer problem. It consists of four classes: Q, the queue that you're trying to synchronize;
Producer, the threaded object that is producing queue entries; Consumer, the threaded
object that is consuming queue entries; and PC, the tiny class that creates the single Q,
Producer, and Consumer.

// An incorrect implementation of a producer and consumer.
class Q

int n;
synchronized int get () {
System.out.println("Got: " + n);

return n;

}

synchronized void put (int n) {
this.n = n;
System.out.println("Put: " + n);

}
}

243

244 Part I: The Java Language

class Producer implements Runnable {
Q g;

Producer (Q q)
this.q = g;
new Thread(this, "Producer") .start();

}

public void run() {
int i = 0;

while (true)
g.put (i++) ;

}
}

class Consumer implements Runnable

Q g;
Consumer (Q q) {

this.q = q;

new Thread(this, "Consumer") .start();
1
public void run() {

while (true) {

g.get () ;

}
}
}

class PC {
public static void main(String argsl[]) {
Q g = new Q();
new Producer (q) ;
new Consumer (q) ;

System.out.println("Press Control-C to stop.");

}
}

Although the put() and get() methods on Q are synchronized, nothing stops the producer
from overrunning the consumer, nor will anything stop the consumer from consuming the
same queue value twice. Thus, you get the erroneous output shown here (the exact output
will vary with processor speed and task load):

Put:
Got:
Got:
Got:
Got:

Y

Chapter 11: Multithreaded Programming 245

Got:
Put:
Put:
Put:
Put:
Put:
Put:
Got:

N 00w

As you can see, after the producer put 1, the consumer started and got the same 1 five times
in a row. Then, the producer resumed and produced 2 through 7 without letting the consumer
have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal in
both directions, as shown here:

// A correct implementation of a producer and consumer.
class Q {

int n;
boolean valueSet = false;
synchronized int get () {
while (!valueSet)
try {
wait () ;

} catch(InterruptedException e)
System.out.println ("InterruptedException caught") ;

}

System.out.println("Got: " + n);
valueSet = false;

notify () ;

return n;

}

synchronized void put (int n) {
while (valueSet)
try {
wait () ;
} catch(InterruptedException e) {
System.out.println ("InterruptedException caught") ;

}

this.n = n;

valueSet = true;
System.out.println("Put: " + n);
notify () ;

}
}

class Producer implements Runnable {
Q q;

246

Part I: The Java Language

Producer (Q q)

this.q = qg;

new Thread(this, "Producer") .start () ;
1
public void run() {

int i = 0;

while (true)

g.put (i++) ;

}

1

}

class Consumer implements Runnable {
Q q;

Consumer (Q q) {
this.q = qg;
new Thread(this, "Consumer") .start();

}
public void run() {
while (true)
g.get();
}
}

}

class PCFixed ({
public static void main(String argsl[]) {
Q g = new Q();
new Producer (q) ;
new Consumer (q) ;

System.out.println ("Press Control-C to stop.");

}
}

Inside get(), wait() is called. This causes its execution to suspend until the Producer
notifies you that some data is ready. When this happens, execution inside get() resumes.
After the data has been obtained, get() calls notify(). This tells Producer that it is okay to
put more data in the queue. Inside put(), wait() suspends execution until the Consumer
has removed the item from the queue. When execution resumes, the next item of data is put
in the queue, and notify() is called. This tells the Consumer that it should now remove it.
Here is some output from this program, which shows the clean synchronous behavior:

Put:
Got:
Put:
Got:
Put:

W NN R R

Chapter 11: Multithreaded Programming

Got:
Put:
Got:
Put:
Got:

(S0 I I N

Deadlock

A special type of error that you need to avoid that relates specifically to multitasking is
deadlock, which occurs when two threads have a circular dependency on a pair of synchronized
objects. For example, suppose one thread enters the monitor on object X and another thread
enters the monitor on object Y. If the thread in X tries to call any synchronized method on Y,
it will block as expected. However, if the thread in Y, in turn, tries to call any synchronized
method on X, the thread waits forever, because to access X, it would have to release its own
lock on Y so that the first thread could complete. Deadlock is a difficult error to debug for
two reasons:

¢ In general, it occurs only rarely, when the two threads time-slice in just the right way.

¢]t may involve more than two threads and two synchronized objects. (That is, deadlock
can occur through a more convoluted sequence of events than just described.)

To understand deadlock fully, it is useful to see it in action. The next example creates two
classes, A and B, with methods foo() and bar(), respectively, which pause briefly before
trying to call a method in the other class. The main class, named Deadlock, creates an A
and a B instance, and then starts a second thread to set up the deadlock condition. The
foo() and bar() methods use sleep() as a way to force the deadlock condition to occur.

// An example of deadlock.
class A {
synchronized void foo(B b)
String name = Thread.currentThread () .getName () ;

System.out.println(name + " entered A.foo");

try {
Thread.sleep(1000) ;

} catch(Exception e)
System.out.println("A Interrupted") ;

}

System.out.println(name + " trying to call B.last()");
b.last();

}

synchronized void last () ({
System.out .println("Inside A.last");

}
}

class B {

241

248 Part I: The Java Language

synchronized void bar (A a)
String name = Thread.currentThread() .getName () ;
System.out.println(name + " entered B.bar");

try {
Thread.sleep (1000) ;

} catch(Exception e) {
System.out.println ("B Interrupted") ;

}

System.out.println(name + " trying to call A.last()");
a.last();

}

synchronized void last () {
System.out.println("Inside A.last");
1

}

class Deadlock implements Runnable {
A a = new A();
B b = new B();

Deadlock ()
Thread.currentThread () .setName ("MainThread") ;
Thread t = new Thread(this, "RacingThread") ;
t.start () ;

a.foo(b); // get lock on a in this thread.
System.out.println("Back in main thread") ;

}

public void run() {
b.bar(a); // get lock on b in other thread.
System.out.println ("Back in other thread");

}

public static void main(String args[]) {
new Deadlock () ;
1

}
When you run this program, you will see the output shown here:

MainThread entered A.foo
RacingThread entered B.bar
MainThread trying to call B.last()
RacingThread trying to call A.last ()

Because the program has deadlocked, you need to press CTRL-C to end the program. You
can see a full thread and monitor cache dump by pressing CTRL-BREAK on a PC . You will see
that RacingThread owns the monitor on b, while it is waiting for the monitor on a. At the

Chapter 11: Multithreaded Programming 249

same time, MainThread owns a and is waiting to get b. This program will never complete.
As this example illustrates, if your multithreaded program locks up occasionally, deadlock
is one of the first conditions that you should check for.

Suspending, Resuming, and Stopping Threads

Sometimes, suspending execution of a thread is useful. For example, a separate thread can
be used to display the time of day. If the user doesn’t want a clock, then its thread can be
suspended. Whatever the case, suspending a thread is a simple matter. Once suspended,
restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between early versions of
Java, such as Java 1.0, and modern versions, beginning with Java 2. Although you should
use the modern approach for all new code, you still need to understand how these operations
were accomplished for earlier Java environments. For example, you may need to update or
maintain older, legacy code. You also need to understand why a change was made. For these
reasons, the next section describes the original way that the execution of a thread was controlled,
followed by a section that describes the modern approach.

Suspending, Resuming, and Stopping Threads Using Java 1.1 and Earlier

Prior to Java 2, a program used suspend() and resume(), which are methods defined by
Thread, to pause and restart the execution of a thread. They have the form shown below:

final void suspend()
final void resume()

The following program demonstrates these methods:

// Using suspend() and resume () .

class NewThread implements Runnable {
String name; // name of thread
Thread t;

NewThread (String threadname) {
name = threadname;
t = new Thread(this, name) ;
System.out .println ("New thread: " + t);
t.start(); // Start the thread

}

// This is the entry point for thread.
public void run() {

try {
for(int 1 = 15; i > 0; i--) {
System.out.println(name + ": " + i);

Thread.sleep (200) ;

1
} catch (InterruptedException e)
System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

250 Part I: The Java Language

class SuspendResume {
public static void main(String args[]) {
NewThread obl = new NewThread ("One") ;
NewThread ob2 = new NewThread ("Two") ;

try {
Thread.sleep(1000) ;
obl.t.suspend() ;
System.out.println ("Suspending thread One") ;
Thread.sleep(1000) ;
obl.t.resume () ;
System.out.println ("Resuming thread One") ;
ob2.t.suspend() ;
System.out.println("Suspending thread Two") ;
Thread.sleep(1000) ;
ob2.t.resume () ;
System.out.println ("Resuming thread Two") ;
} catch (InterruptedException e)
System.out.println("Main thread Interrupted") ;
}

// wait for threads to finish

try {
System.out.println("Waiting for threads to finish.");
obl.t.join() ;
ob2.t.join() ;

} catch (InterruptedException e)
System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}
}

Sample output from this program is shown here. (Your output may differ based on processor

speed and task load.)

New thread: Thread[One,5,main]
One: 15

New thread: Thread[Two,5,main]
Two: 15

One: 14

Two: 14

One: 13

Two: 13

One: 12

Two: 12

One: 11

Two: 11

Suspending thread One

Two: 10

Two: 9

Two: 8

Chapter 11: Multithreaded Programming

Two: 7

Two: 6

Resuming thread One
Suspending thread Two

One: 10
One: 9
One: 8
One: 7
One: 6

Resuming thread Two

Waiting for threads to finish.
Two: 5

One:
Two:
One:
Two:
One:
Two:
One:
Two :
One: 1

Two exiting.

One exiting.

Main thread exiting.

P NN WWS O

The Thread class also defines a method called stop() that stops a thread. Its signature is
shown here:

final void stop()

Once a thread has been stopped, it cannot be restarted using resume().

The Modern Way of Suspending, Resuming, and Stopping Threads

While the suspend(), resume(), and stop() methods defined by Thread seem to be a perfectly
reasonable and convenient approach to managing the execution of threads, they must not
be used for new Java programs. Here’s why. The suspend() method of the Thread class was
deprecated by Java 2 several years ago. This was done because suspend() can sometimes
cause serious system failures. Assume that a thread has obtained locks on critical data
structures. If that thread is suspended at that point, those locks are not relinquished. Other
threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, was deprecated by Java 2. This was done
because this method can sometimes cause serious system failures. Assume that a thread is
writing to a critically important data structure and has completed only part of its changes.
If that thread is stopped at that point, that data structure might be left in a corrupted state.

251

252

Part I: The Java Language

Because you can’t now use the suspend(), resume(), or stop() methods to control a
thread, you might be thinking that no way exists to pause, restart, or terminate a thread.
But, fortunately, this is not true. Instead, a thread must be designed so that the run() method
periodically checks to determine whether that thread should suspend, resume, or stop its
own execution. Typically, this is accomplished by establishing a flag variable that indicates
the execution state of the thread. As long as this flag is set to “running,” the run() method
must continue to let the thread execute. If this variable is set to “suspend,” the thread must
pause. If it is set to “stop,” the thread must terminate. Of course, a variety of ways exist in
which to write such code, but the central theme will be the same for all programs.

The following example illustrates how the wait() and notify() methods that are inherited
from Object can be used to control the execution of a thread. This example is similar to the
program in the previous section. However, the deprecated method calls have been removed.
Let us consider the operation of this program.

The NewThread class contains a boolean instance variable named suspendFlag, which
is used to control the execution of the thread. It is initialized to false by the constructor. The
run() method contains a synchronized statement block that checks suspendFlag. If that
variable is true, the wait() method is invoked to suspend the execution of the thread. The
mysuspend() method sets suspendFlag to true. The myresume() method sets suspendFlag
to false and invokes notify() to wake up the thread. Finally, the main() method has been
modified to invoke the mysuspend() and myresume() methods.

// Suspending and resuming a thread the modern way.
class NewThread implements Runnable {

String name; // name of thread

Thread t;

boolean suspendFlag;

NewThread (String threadname) {
name = threadname;
t = new Thread(this, name) ;
System.out.println("New thread: " + t);
suspendFlag = false;
t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {
try {
for(int 1 = 15; i > 0; i--) {
System.out.println(name + ": " + i);

Thread.sleep(200) ;
synchronized (this) {
while (suspendFlag) {
wait () ;

}
}
}

} catch (InterruptedException e)
System.out.println(name + " interrupted.");

}

Chapter 11: Multithreaded Programming

System.out.println(name + " exiting.");

}

void mysuspend () {
suspendFlag = true;

}

synchronized void myresume () {
suspendFlag = false;
notify () ;

}
}

class SuspendResume {
public static void main(String argsl[]) {
NewThread obl = new NewThread ("One") ;
NewThread ob2 = new NewThread("Two") ;

try {
Thread.sleep(1000) ;
obl.mysuspend() ;
System.out.println ("Suspending thread One") ;
Thread.sleep(1000) ;
obl.myresume () ;
System.out.println ("Resuming thread One") ;
ob2.mysuspend () ;
System.out.println("Suspending thread Two") ;
Thread.sleep(1000) ;
ob2.myresume () ;
System.out.println ("Resuming thread Two") ;
} catch (InterruptedException e)
System.out.println("Main thread Interrupted") ;
}

// wait for threads to finish

try {
System.out.println("Waiting for threads to finish.");

obl.t.join() ;
ob2.t.join() ;

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

System.out.println("Main thread exiting.");

The output from this program is identical to that shown in the previous section. Later
in this book, you will see more examples that use the modern mechanism of thread control.
Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the way required
to ensure that run-time errors don’t occur. It is the approach that must be used for all new code.

253

254 Part I: The Java Language

Using Multithreading

The key to utilizing Java’s multithreading features effectively is to think concurrently rather
than serially. For example, when you have two subsystems within a program that can execute
concurrently, make them individual threads. With the careful use of multithreading, you can
create very efficient programs. A word of caution is in order, however: If you create too many
threads, you can actually degrade the performance of your program rather than enhance it.
Remember, some overhead is associated with context switching. If you create too many threads,
more CPU time will be spent changing contexts than executing your program!

CHAPTER

Enumerations, Autoboxing,
and Annotations (Metadata)

autoboxing, and annotations (also referred to as metadata). Each expands the power
of the language by offering a streamlined approach to handling common programming
tasks. This chapter also discusses Java’s type wrappers and introduces reflection.

This chapter examines three recent additions to the Java language: enumerations,

Enumerations

Versions prior to JDK 5 lacked one feature that many programmers felt was needed:
enumerations. In its simplest form, an enumeration is a list of named constants. Although
Java offered other features that provide somewhat similar functionality, such as final
variables, many programmers still missed the conceptual purity of enumerations—especially
because enumerations are supported by most other commonly used languages. Beginning
with JDK' 5, enumerations were added to the Java language, and they are now available to
the Java programmer.

In their simplest form, Java enumerations appear similar to enumerations in other
languages. However, this similarity is only skin deep. In languages such as C++, enumerations
are simply lists of named integer constants. In Java, an enumeration defines a class type. By
making enumerations into classes, the concept of the enumeration is greatly expanded. For
example, in Java, an enumeration can have constructors, methods, and instance variables.
Therefore, although enumerations were several years in the making, Java’s rich
implementation made them well worth the wait.

Enumeration Fundamentals

An enumeration is created using the enum keyword. For example, here is a simple
enumeration that lists various apple varieties:

// An enumeration of apple varieties.
enum Apple
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}
255

256

Part I: The Java Language

The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants. Each is
implicitly declared as a public, static final member of Apple. Furthermore, their type is the
type of the enumeration in which they are declared, which is Apple in this case. Thus,

in the language of Java, these constants are called self-typed, in which “self” refers to the
enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However,
even though enumerations define a class type, you do not instantiate an enum using new.
Instead, you declare and use an enumeration variable in much the same way as you do one
of the primitive types. For example, this declares ap as a variable of enumeration type Apple:

Apple ap;

Because ap is of type Apple, the only values that it can be assigned (or can contain) are those
defined by the enumeration. For example, this assigns ap the value RedDel:

ap = Apple.RedDel;

Notice that the symbol RedDel is preceded by Apple.
Two enumeration constants can be compared for equality by using the = = relational
operator. For example, this statement compares the value in ap with the GoldenDel constant:

if (ap == Apple.GoldenDel) //

An enumeration value can also be used to control a switch statement. Of course, all
of the case statements must use constants from the same enum as that used by the switch
expression. For example, this switch is perfectly valid:

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:

/7

case Winesap:

//

Notice that in the case statements, the names of the enumeration constants are used without
being qualified by their enumeration type name. That is, Winesap, not Apple.Winesap, is used.
This is because the type of the enumeration in the switch expression has already implicitly
specified the enum type of the case constants. There is no need to qualify the constants in
the case statements with their enum type name. In fact, attempting to do so will cause a
compilation error.

When an enumeration constant is displayed, such as in a println() statement, its name
is output. For example, given this statement:

System.out .println (Apple.Winesap) ;

the name Winesap is displayed.
The following program puts together all of the pieces and demonstrates the Apple
enumeration:

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

// An enumeration of apple varieties.
enum Apple

Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo {
public static void main(String argsl([])
{

Apple ap;
ap = Apple.RedDel;

// Output an enum value.
System.out.println("Value of ap: " + ap);
System.out .println() ;

ap = Apple.GoldenDel;

// Compare two enum values.
if (ap == Apple.GoldenDel)
System.out.println("ap contains GoldenDel.\n") ;

// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:
System.out .println ("Jonathan is red.");
break;
case GoldenDel:
System.out.println("Golden Delicious is yellow.");
break;
case RedDel:
System.out .println("Red Delicious is red.");
break;
case Winesap:
System.out.println("Winesap is red.");
break;
case Cortland:
System.out.println("Cortland is red.");
break;

The output from the program is shown here:

Value of ap: RedDel
ap contains GoldenDel.

Golden Delicious is yellow.

251

258

Part I: The Java Language

The values() and valueOf() Methods

All enumerations automatically contain two predefined methods: values() and valueOf().
Their general forms are shown here:

public static enum-type[] values()
public static enum-type valueOf(String str)

The values() method returns an array that contains a list of the enumeration constants. The
valueOf() method returns the enumeration constant whose value corresponds to the string
passed in str. In both cases, enum-type is the type of the enumeration. For example, in the case
of the Apple enumeration shown earlier, the return type of Apple.valueOf(“Winesap”) is
Winesap.

The following program demonstrates the values() and valueOf() methods:

// Use the built-in enumeration methods.

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo2 {
public static void main(String args([])

{

Apple ap;
System.out.println ("Here are all Apple constants:");

// use values()

Apple allapples[] = Apple.values();

for (Apple a : allapples)
System.out.println(a) ;

System.out.println() ;

// use valueOf ()
ap = Apple.valueOf ("Winesap") ;
System.out.println("ap contains " + ap);

}
}

The output from the program is shown here:

Here are all Apple constants:
Jonathan

GoldenDel

RedDel

Winesap

Cortland

ap contains Winesap

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata) 259

Notice that this program uses a for-each style for loop to cycle through the array of
constants obtained by calling values(). For the sake of illustration, the variable allapples
was created and assigned a reference to the enumeration array. However, this step is not
necessary because the for could have been written as shown here, eliminating the need for
the allapples variable:

for (Apple a : Apple.values())
System.out.println(a) ;

Now, notice how the value corresponding to the name Winesap was obtained by calling
valueOf().

ap = Apple.valueOf ("Winesap") ;

As explained, valueOf() returns the enumeration value associated with the name of the
constant represented as a string.

NOTE C/C++ programmers will notice that Java makes it much easier to translate between the
human-readable form of an enumeration constant and its binary value than do these other
languages. This is a significant advantage to Java’s approach to enumerations.

Java Enumerations Are Class Types

As explained, a Java enumeration is a class type. Although you don’t instantiate an enum
using new, it otherwise has much the same capabilities as other classes. The fact that enum
defines a class gives powers to the Java enumeration that enumerations in other
languages simply do not have. For example, you can give them constructors, add instance
variables and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its enumeration
type. Thus, when you define a constructor for an enum, the constructor is called when each
enumeration constant is created. Also, each enumeration constant has its own copy of any
instance variables defined by the enumeration. For example, consider the following version
of Apple:

// Use an enum constructor, instance variable, and method.
enum Apple
Jonathan (10), GoldenDel (9), RedDel(12), Winesap(1l5), Cortland(8);

private int price; // price of each apple

// Constructor
Apple (int p) { price = p; }

int getPrice() { return price; }

}

class EnumDemo3 {
public static void main(String argsl([])

{

Apple ap;

260

Part I: The Java Language

// Display price of Winesap.

System.out .println("Winesap costs " +
Apple.Winesap.getPrice() +
" cents.\n") ;

// Display all apples and prices.
System.out .println("All apple prices:");
for (Apple a : Apple.values())
System.out.println(a + " costs " + a.getPrice() +
" cents.");

}
}

The output is shown here:

Winesap costs 15 cents.

All apple prices:
Jonathan costs 10 cents.
GoldenDel costs 9 cents.
RedDel costs 12 cents.
Winesap costs 15 cents.
Cortland costs 8 cents.

This version of Apple adds three things. The first is the instance variable price, which is
used to hold the price of each variety of apple. The second is the Apple constructor, which
is passed the price of an apple. The third is the method getPrice(), which returns the value
of price.

When the variable ap is declared in main(), the constructor for Apple is called once for
each constant that is specified. Notice how the arguments to the constructor are specified,
by putting them inside parentheses after each constant, as shown here:

Jonathan (10), GoldenDel (9), RedDel (12), Winesap(1l5), Cortland(8);

These values are passed to the p parameter of Apple(), which then assigns this value to price.
Again, the constructor is called once for each constant.

Because each enumeration constant has its own copy of price, you can obtain the price of
a specified type of apple by calling getPrice(). For example, in main() the price of a Winesap
is obtained by the following call:

Apple.Winesap.getPrice ()

The prices of all varieties are obtained by cycling through the enumeration using a for loop.
Because there is a copy of price for each enumeration constant, the value associated with
one constant is separate and distinct from the value associated with another constant. This
is a powerful concept, which is only available when enumerations are implemented as classes,
as Java does.

Although the preceding example contains only one constructor, an enum can offer two
or more overloaded forms, just as can any other class. For example, this version of Apple
provides a default constructor that initializes the price to %, to indicate that no price data
is available:

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

// Use an enum constructor.
enum Apple
Jonathan (10), GoldenDel (9), RedDel, Winesap(1l5), Cortland(8) ;

private int price; // price of each apple

// Constructor
Apple (int p) { price = p; }

// Overloaded constructor
Apple() { price = -1; }

int getPrice() { return price; }

}

Notice that in this version, RedDel is not given an argument. This means that the default
constructor is called, and RedDel’s price variable is given the value %.

Here are two restrictions that apply to enumerations. First, an enumeration can’t inherit
another class. Second, an enum cannot be a superclass. This means that an enum can’t be
extended. Otherwise, enum acts much like any other class type. The key is to remember that
each of the enumeration constants is an object of the class in which it is defined.

Enumerations Inherit Enum

Although you can’t inherit a superclass when declaring an enum, all enumerations
automatically inherit one: java.lang.Enum. This class defines several methods that are
available for use by all enumerations. The Enum class is described in detail in Part II,
but three of its methods warrant a discussion at this time.

You can obtain a value that indicates an enumeration constant’s position in the list of
constants. This is called its ordinal value, and it is retrieved by calling the ordinal() method,
shown here:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in
the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal
value of 1, RedDel has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using
the compareTo() method. It has this general form:

final int compareTo(enum-type e)

Here, enum-type is the type of the enumeration, and e is the constant being compared to
the invoking constant. Remember, both the invoking constant and e must be of the same
enumeration. If the invoking constant has an ordinal value less than ¢’s, then compareTo()
returns a negative value. If the two ordinal values are the same, then zero is returned. If the
invoking constant has an ordinal value greater than ¢’s, then a positive value is returned.
You can compare for equality an enumeration constant with any other object by using
equals(), which overrides the equals() method defined by Object. Although equals() can
compare an enumeration constant to any other object, those two objects will only be equal if

261

262 Partl: The Java Language

they both refer to the same constant, within the same enumeration. Simply having ordinal
values in common will not cause equals() to return true if the two constants are from
different enumerations.

Remember, you can compare two enumeration references for equality by using = =.

The following program demonstrates the ordinal(), compareTo(), and equals() methods:

// Demonstrate ordinal (), compareTo(), and equals().

// An enumeration of apple varieties.
enum Apple

Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo4 {
public static void main(String argsl(])

{

Apple ap, ap2, ap3;

// Obtain all ordinal values using ordinal ().
System.out.println ("Here are all apple constants" +
" and their ordinal values: ");
for (Apple a : Apple.values())
System.out.println(a + " " + a.ordinal());

ap = Apple.RedDel;
ap2 = Apple.GoldenDel;
ap3 Apple.RedDel;

System.out.println() ;

// Demonstrate compareTo() and equals()
if (ap.compareTo (ap2) < 0)
System.out.println(ap + " comes before " + ap2);

if (ap.compareTo (ap2) > 0)
System.out.println(ap2 + " comes before " + ap);

if (ap.compareTo (ap3) == 0)
System.out.println(ap + " equals " + ap3);
System.out.println() ;

if (ap.equals (ap2))
System.out.println ("Error!") ;

if (ap.equals (ap3))
System.out.println(ap + " equals " + ap3);

if (ap == ap3)
System.out.println(ap + " == " + ap3);

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

The output from the program is shown here:

Here are all apple constants and their ordinal values:
Jonathan 0

GoldenDel 1

RedDel 2

Winesap 3

Cortland 4

GoldenDel comes before RedDel
RedDel equals RedDel

RedDel equals RedDel
RedDel == RedDel

Another Enumeration Example

Before moving on, we will look at a different example that uses an enum. In Chapter 9, an
automated “decision maker” program was created. In that version, variables called NO,
YES, MAYBE, LATER, SOON, and NEVER were declared within an interface and used to
represent the possible answers. While there is nothing technically wrong with that approach,
the enumeration is a better choice. Here is an improved version of that program that uses an
enum called Answers to define the answers. You should compare this version to the original
in Chapter 9.

// An improved version of the "Decision Maker"
// program from Chapter 9. This version uses an
// enum, rather than interface variables, to

// represent the answers.

import java.util.Random;

// An enumeration of the possible answers.
enum Answers {
NO, YES, MAYBE, LATER, SOON, NEVER

}

class Question {
Random rand = new Random() ;
Answers ask() {
int prob = (int) (100 * rand.nextDouble()) ;

if (prob < 15)
return Answers.MAYBE; // 15%
else if (prob < 30)

return Answers.NO; // 15%
else if (prob < 60)
return Answers.YES; // 30%

else if (prob < 75)

return Answers.LATER; // 15%
else if (prob < 98)

return Answers.SOON; // 13%

263

264

Part I: The Java Language

else
return Answers.NEVER; // 2%

}
}

class AskMe (
static void answer (Answers result)
switch(result)

case NO:
System.out .println ("No") ;
break;

case YES:
System.out.println("Yes") ;
break;

case MAYBE:
System.out.println ("Maybe") ;
break;

case LATER:
System.out.println ("Later") ;
break;

case SOON:
System.out.println("Soon") ;
break;

case NEVER:
System.out.println ("Never") ;
break;

}
}

public static void main(String argsl[]) {
Question g = new Question();

answer (q.ask()) ;

k

()
answer (g.ask()) ;
answer (qg.ask()) ;
answer (g.ask()) ;

Type Wrappers

As you know, Java uses primitive types (also called simple types), such as int or double, to
hold the basic data types supported by the language. Primitive types, rather than objects,
are used for these quantities for the sake of performance. Using objects for these values would
add an unacceptable overhead to even the simplest of calculations. Thus, the primitive types
are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when
you will need an object representation. For example, you can’t pass a primitive type by
reference to a method. Also, many of the standard data structures implemented by Java
operate on objects, which means that you can’t use these data structures to store primitive
types. To handle these (and other) situations, Java provides type wrappers, which are classes
that encapsulate a primitive type within an object. The type wrapper classes are described

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

in detail in Part II, but they are introduced here because they relate directly to Java’s
autoboxing feature.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean.

These classes offer a wide array of methods that allow you to fully integrate the primitive
types into Java’s object hierarchy. Each is briefly examined next.

Character
Character is a wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.
To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()
It returns the encapsulated character.

Boolean
Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString
contains the string “true” (in uppercase or lowercase), then the new Boolean object will be
true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue()
It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers

By far, the most commonly used type wrappers are those that represent numeric values.
These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers
inherit the abstract class Number. Number declares methods that return the value of an
object in each of the different number formats. These methods are shown here:

byte byteValue()
double doubleValue()
float floatValue()

int intValue()

long longValue()
short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue()
returns the value as a float, and so on. These methods are implemented by each of the
numeric type wrappers.

265

266

Part I: The Java Language

All of the numeric type wrappers define constructors that allow an object to be constructed
from a given value, or a string representation of that value. For example, here are the
constructors defined for Integer:

Integer(int num)
Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown.

All of the type wrappers override toString(). It returns the human-readable form of the
value contained within the wrapper. This allows you to output the value by passing a type
wrapper object to println(), for example, without having to convert it into its primitive type.

The following program demonstrates how to use a numeric type wrapper to
encapsulate a value and then extract that value.

// Demonstrate a type wrapper.
class Wrap
public static void main(String args[]) {

Integer i0b = new Integer(100) ;
int i = i0Ob.intValue() ;
System.out.println(i + " " + iOb); // displays 100 100

}
}

This program wraps the integer value 100 inside an Integer object called iOb. The program
then obtains this value by calling intValue() and stores the result in i.

The process of encapsulating a value within an object is called boxing. Thus, in the program,
this line boxes the value 100 into an Integer:

Integer iOb = new Integer (100) ;

The process of extracting a value from a type wrapper is called unboxing. For example, the
program unboxes the value in iOb with this statement:

int i = i0Ob.intValue() ;

The same general procedure used by the preceding program to box and unbox values has
been employed since the original version of Java. However, with the release of JDK 5, Java
fundamentally improved on this through the addition of autoboxing, described next.

Autoboxing

Beginning with JDK 5, Java added two important features: aufoboxing and auto-unboxing.
Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)
into its equivalent type wrapper whenever an object of that type is needed. There is no need
to explicitly construct an object. Auto-unboxing is the process by which the value of a boxed
object is automatically extracted (unboxed) from a type wrapper when its value is needed.
There is no need to call a method such as intValue() or doubleValue().

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata) 267

The addition of autoboxing and auto-unboxing greatly streamlines the coding of several
algorithms, removing the tedium of manually boxing and unboxing values. It also helps
prevent errors. Moreover, it is very important to generics, which operates only on objects.
Finally, autoboxing makes working with the Collections Framework (described in Part II)
much easier.

With autoboxing it is no longer necessary to manually construct an object in order to
wrap a primitive type. You need only assign that value to a type-wrapper reference. Java
automatically constructs the object for you. For example, here is the modern way to construct
an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that no object is explicitly created through the use of new. Java handles this for you,
automatically.

To unbox an object, simply assign that object reference to a primitive-type variable.
For example, to unbox iOb, you can use this line:

int 1 = i0b; // auto-unbox

Java handles the details for you.
Here is the preceding program rewritten to use autoboxing/unboxing;:

// Demonstrate autoboxing/unboxing.
class AutoBox {
public static void main(String argsl[]) {

Integer iOb = 100; // autobox an int
int i = i1i0b; // auto-unbox

System.out.println(i + " " + iOb); // displays 100 100
1
}

Autoboxing and Methods

In addition to the simple case of assignments, autoboxing automatically occurs whenever
a primitive type must be converted into an object; auto-unboxing takes place whenever an
object must be converted into a primitive type. Thus, autoboxing/unboxing might occur when
an argument is passed to a method, or when a value is returned by a method. For example,
consider this example:

// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
// Take an Integer parameter and return
// an int value;
static int m(Integer v) {
return v ; // auto-unbox to int
1

268

Part I: The Java Language

public static void main(String args[]) {
// Pass an int to m() and assign the return value
// to an Integer. Here, the argument 100 is autoboxed
// into an Integer. The return value is also autoboxed
// into an Integer.
Integer iOb = m(100) ;

System.out.println (i0b) ;

This program displays the following result:
100

In the program, notice that m() specifies an Integer parameter and returns an int result.
Inside main(), m() is passed the value 100. Because m() is expecting an Integer, this value
is automatically boxed. Then, m() returns the int equivalent of its argument. This causes v
to be auto-unboxed. Next, this int value is assigned to iOb in main(), which causes the int
return value to be autoboxed.

Autoboxing/Unboxing Occurs in Expressions

In general, autoboxing and unboxing take place whenever a conversion into an object or from
an object is required. This applies to expressions. Within an expression, a numeric object is
automatically unboxed. The outcome of the expression is reboxed, if necessary. For example,
consider the following program:

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 ({
public static void main(String args[]) {

Integer iOb, 10b2;

int i;
i0b = 100;
System.out .println ("Original value of iOb: " + iOb) ;

// The following automatically unboxes iOb,
// performs the increment, and then reboxes
// the result back into i0Ob.

++10b;

System.out.println ("After ++iOb: " + 10Db) ;

// Here, 10b is unboxed, the expression is

// evaluated, and the result is reboxed and

// assigned to 10b2.

i0b2 = iOb + (iOb / 3);

System.out.println ("iOb2 after expression: " + iOb2);

// The same expression is evaluated, but the

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata) 269

// result is not reboxed.
i = i0Ob + (i0b / 3);
System.out.println("i after expression: " + 1i);

}
}

The output is shown here:

Original value of iOb: 100
After ++i0Ob: 101

iOb2 after expression: 134
i after expression: 134

In the program, pay special attention to this line:
++10b;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the
value is incremented, and the result is reboxed.

Auto-unboxing also allows you to mix different types of numeric objects in an expression.
Once the values are unboxed, the standard type promotions and conversions are applied. For
example, the following program is perfectly valid:

class AutoBox4 {
public static void main(String argsl[]) {

Integer i0b = 100;
Double dOb = 98.6;

dOb = dOb + iOb;
System.out.println ("dOb after expression: " + dOb);

}
}

The output is shown here:
dOb after expression: 198.6

As you can see, both the Double object dOb and the Integer object iOb participated
in the addition, and the result was reboxed and stored in dOb.

Because of auto-unboxing, you can use integer numeric objects to control a switch
statement. For example, consider this fragment:

Integer iOb = 2;

switch(i0b)
case 1: System.out.println("one") ;
break;
case 2: System.out.println("two") ;
break;

210

Part I: The Java Language

default: System.out.println("error");

}

When the switch expression is evaluated, iOb is unboxed and its int value is obtained.

As the examples in the program show, because of autoboxing /unboxing, using numeric
objects in an expression is both intuitive and easy. In the past, such code would have involved
casts and calls to methods such as intValue().

Autoboxing/Unboxing Boolean and Character Values

As described earlier, Java also supplies wrappers for boolean and char. These are Boolean
and Character. Autoboxing/unboxing applies to these wrappers, too. For example, consider
the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5 {
public static void main(String args[]) {

// Autobox/unbox a boolean.
Boolean b = true;

// Below, b is auto-unboxed when used in
// a conditional expression, such as an if.
if (b) System.out.println("b is true");

// Autobox/unbox a char.
Character ch = 'x'; // box a char
char ch2 = ch; // unbox a char

System.out.println("ch2 is " + ch2);

}
}

The output is shown here:

b is true
ch2 is x

The most important thing to notice about this program is the auto-unboxing of b inside
the if conditional expression. As you should recall, the conditional expression that controls
an if must evaluate to type boolean. Because of auto-unboxing, the boolean value contained
within b is automatically unboxed when the conditional expression is evaluated. Thus, with
the advent of autoboxing /unboxing, a Boolean object can be used to control an if statement.

Because of auto-unboxing, a Boolean object can now also be used to control any of Java’s
loop statements. When a Boolean is used as the conditional expression of a while, for, or
do/while, it is automatically unboxed into its boolean equivalent. For example, this is now
perfectly valid code:

Boolean b;

/] ...
while(b) { //

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

Autoboxing/Unboxing Helps Prevent Errors

In addition to the convenience that it offers, autoboxing/unboxing can also help prevent
errors. For example, consider the following program:

// An error produced by manual unboxing.
class UnboxingError {
public static void main(String argsl[]) {

Integer 10b = 1000; // autobox the value 1000
int 1 = iOb.byteValue(); // manually unbox as byte !!!

System.out.println(i); // does not display 1000 !
}
}

This program displays not the expected value of 1000, but 24! The reason is that the value
inside iOb is manually unboxed by calling byteValue(), which causes the truncation of the
value stored in iOb, which is 1,000. This results in the garbage value of 24 being assigned
to i. Auto-unboxing prevents this type of error because the value in iOb will always auto-
unbox into a value compatible with int.

In general, because autoboxing always creates the proper object, and auto-unboxing
always produces the proper value, there is no way for the process to produce the wrong
type of object or value. In the rare instances where you want a type different than that
produced by the automated process, you can still manually box and unbox values. Of
course, the benefits of autoboxing/unboxing are lost. In general, new code should employ
autoboxing/unboxing. It is the way that modern Java code will be written.

A Word of Warning

Now that Java includes autoboxing and auto-unboxing, some might be tempted to use objects
such as Integer or Double exclusively, abandoning primitives altogether. For example, with
autoboxing/unboxing it is possible to write code like this:

// A bad use of autoboxing/unboxing!
Double a, b, c¢;

a = 10.0;
b =4.0;

c Math.sgrt (a*a + b*b);

System.out.println ("Hypotenuse is " + c¢);

In this example, objects of type Double hold values that are used to calculate the hypotenuse
of a right triangle. Although this code is technically correct and does, in fact, work properly,
it is a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code
written using the primitive type double. The reason is that each autobox and auto-unbox
adds overhead that is not present if the primitive type is used.

211

212

Part I: The Java Language

In general, you should restrict your use of the type wrappers to only those cases in which
an object representation of a primitive type is required. Autoboxing/unboxing was not added
to Java as a “back door” way of eliminating the primitive types.

Annotations (Metadata)

Beginning with JDK 5, a new facility was added to Java that enables you to embed
supplemental information into a source file. This information, called an annotation, does not
change the actions of a program. Thus, an annotation leaves the semantics of a program
unchanged. However, this information can be used by various tools during both development
and deployment. For example, an annotation might be processed by a source-code generator.
The term metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

Annotation Basics

An annotation is created through a mechanism based on the interface. Let’s begin with an
example. Here is the declaration for an annotation called MyAnno:

// A simple annotation type.
@interface MyAnno {

String str () ;

int val();

}

First, notice the @ that precedes the keyword interface. This tells the compiler that
an annotation type is being declared. Next, notice the two members str() and val(). All
annotations consist solely of method declarations. However, you don’t provide bodies for
these methods. Instead, Java implements these methods. Moreover, the methods act much
like fields, as you will see.

An annotation cannot include an extends clause. However, all annotation types
automatically extend the Annotation interface. Thus, Annotation is a super-interface of all
annotations. It is declared within the java.lang.annotation package. It overrides hashCode(),
equals(), and toString(), which are defined by Object. It also specifies annotationType(),
which returns a Class object that represents the invoking annotation.

Once you have declared an annotation, you can use it to annotate a declaration. Any
type of declaration can have an annotation associated with it. For example, classes, methods,
fields, parameters, and enum constants can be annotated. Even an annotation can be annotated.
In all cases, the annotation precedes the rest of the declaration.

When you apply an annotation, you give values to its members. For example, here is an
example of MyAnno being applied to a method:

// Annotate a method.
@MyAnno (str = "Annotation Example", val = 100)
public static void myMeth() { //

This annotation is linked with the method myMeth(). Look closely at the annotation syntax.
The name of the annotation, preceded by an @, is followed by a parenthesized list of member
initializations. To give a member a value, that member’s name is assigned a value. Therefore,
in the example, the string “Annotation Example” is assigned to the str member of MyAnno.

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

Notice that no parentheses follow str in this assignment. When an annotation member is
given a value, only its name is used. Thus, annotation members look like fields in this context.

Specifying a Retention Policy

Before exploring annotations further, it is necessary to discuss annotation retention policies.

A retention policy determines at what point an annotation is discarded. Java defines three
such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy
enumeration. They are SOURCE, CLASS, and RUNTIME.

An annotation with a retention policy of SOURCE is retained only in the source file
and is discarded during compilation.

An annotation with a retention policy of CLASS is stored in the .class file during
compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of RUNTIME is stored in the .class file during
compilation and is available through the JVM during run time. Thus, RUNTIME retention
offers the greatest annotation persistence.

A retention policy is specified for an annotation by using one of Java’s built-in annotations:
@Retention. Its general form is shown here:

@Retention(retention-policy)

Here, retention-policy must be one of the previously discussed enumeration constants. If no
retention policy is specified for an annotation, then the default policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the RUNTIME retention
policy. Thus, MyAnno will be available to the JVM during program execution.

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str();

int val() ;

}

Obtaining Annotations at Run Time by Use of Reflection

Although annotations are designed mostly for use by other development or deployment tools,
if they specify a retention policy of RUNTIME, then they can be queried at run time by any
Java program through the use of reflection. Reflection is the feature that enables information
about a class to be obtained at run time. The reflection API is contained in the java.lang.reflect
package. There are a number of ways to use reflection, and we won’t examine them all here.
We will, however, walk through a few examples that apply to annotations.

The first step to using reflection is to obtain a Class object that represents the class
whose annotations you want to obtain. Class is one of Java’s built-in classes and is defined
in java.lang. It is described in detail in Part II. There are various ways to obtain a Class
object. One of the easiest is to call getClass(), which is a method defined by Object. Its
general form is shown here:

final Class getClass()

It returns the Class object that represents the invoking object. (getClass() and several other
reflection-related methods make use of the generics feature. However, because generics are not
discussed until Chapter 14, these methods are shown and used here in their raw form. As a result,
you will see a warning message when you compile the following programs. In Chapter 14, you
will learn about generics in detail.)

213

214

Part I: The Java Language

After you have obtained a Class object, you can use its methods to obtain information
about the various items declared by the class, including its annotations. If you want to obtain
the annotations associated with a specific item declared within a class, you must first obtain an
object that represents that item. For example, Class supplies (among others) the getMethod(),
getField(), and getConstructor() methods, which obtain information about a method, field,
and constructor, respectively. These methods return objects of type Method, Field, and
Constructor.

To understand the process, let’s work through an example that obtains the annotations
associated with a method. To do this, you first obtain a Class object that represents the class, and
then call getMethod() on that Class object, specifying the name of the method. getMethod()
has this general form:

Method getMethod(String methName, Class ... paramTypes)

The name of the method is passed in methName. If the method has arguments, then Class
objects representing those types must also be specified by paramTypes. Notice that paramTypes
is a varargs parameter. This means that you can specify as many parameter types as needed,
including zero. getMethod() returns a Method object that represents the method. If the method
can’t be found, NoSuchMethodException is thrown.

From a Class, Method, Field, or Constructor object, you can obtain a specific annotation
associated with that object by calling getAnnotation(). Its general form is shown here:

Annotation getAnnotation(Class annoType)

Here, annoType is a Class object that represents the annotation in which you are interested.
The method returns a reference to the annotation. Using this reference, you can obtain the
values associated with the annotation’s members. The method returns null if the annotation
is not found, which will be the case if the annotation does not have RUNTIME retention.

Here is a program that assembles all of the pieces shown earlier and uses reflection to
display the annotation associated with a method.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration.
@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str();

int val() ;

}

class Meta

// Annotate a method.
@MyAnno (str = "Annotation Example", val = 100)
public static void myMeth()

Meta ob = new Metal() ;

// Obtain the annotation for this method
// and display the values of the members.

try {

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

// First, get a Class object that represents
// this class.
Class ¢ = ob.getClass() ;

// Now, get a Method object that represents
// this method.
Method m = c.getMethod ("myMeth") ;

// Next, get the annotation for this class.
MyAnno anno = m.getAnnotation (MyAnno.class) ;

// Finally, display the values.
System.out.println(anno.str() + " " + anno.val());
} catch (NoSuchMethodException exc) {
System.out.println ("Method Not Found.") ;
}

}

public static void main(String argsl[]) {
myMeth () ;

}
}

The output from the program is shown here:
Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val
in the MyAnno annotation associated with myMeth() in the Meta class. There are two things
to pay special attention to. First, in this line

MyAnno anno = m.getAnnotation (MyAnno.class) ;

notice the expression MyAnno.class. This expression evaluates to a Class object of type
MyAnno, the annotation. This construct is called a class literal. You can use this type of
expression whenever a Class object of a known class is needed. For example, this statement
could have been used to obtain the Class object for Meta:

Class c¢ = Meta.class;

Of course, this approach only works when you know the class name of an object in advance,
which might not always be the case. In general, you can obtain a class literal for classes,
interfaces, primitive types, and arrays.

The second point of interest is the way the values associated with str and val are obtained
when they are output by the following line:

System.out.println(anno.str() + " " + anno.val());

Notice that they are invoked using the method-call syntax. This same approach is used
whenever the value of an annotation member is required.

215

216

Part I: The Java Language

A Second Reflection Example

In the preceding example, myMeth() has no parameters. Thus, when getMethod() was
called, only the name myMeth was passed. However, to obtain a method that has parameters,
you must specify class objects representing the types of those parameters as arguments to
getMethod(). For example, here is a slightly different version of the preceding program:

import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str () ;

int val() ;

}
class Meta {
// myMeth now has two arguments.

@MyAnno (str = "Two Parameters", val = 19)
public static void myMeth(String str, int i)

{

Meta ob = new Metal() ;

try {
Class c = ob.getClass();

// Here, the parameter types are specified.
Method m = c.getMethod ("myMeth", String.class, int.class);

MyAnno anno = m.getAnnotation (MyAnno.class) ;
System.out.println(anno.stxr() + " " + anno.vall());

} catch (NoSuchMethodException exc) {
System.out .println ("Method Not Found.") ;
}

}

public static void main(String args[]) {
myMeth ("test", 10);
1

}
The output from this version is shown here:
Two Parameters 19

In this version, myMeth() takes a String and an int parameter. To obtain information
about this method, getMethod() must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)

Obtaining All Annotations
You can obtain all annotations that have RUNTIME retention that are associated with an
item by calling getAnnotations() on that item. It has this general form:

Annotation[] getAnnotations()

It returns an array of the annotations. getAnnotations() can be called on objects of type
Class, Method, Constructor, and Field.

Here is another reflection example that shows how to obtain all annotations associated
with a class and with a method. It declares two annotations. It then uses those annotations
to annotate a class and a method.

// Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str();

int val() ;

}

@Retention (RetentionPolicy.RUNTIME)
@interface What {
String description() ;

@What (description = "An annotation test class")
@MyAnno (str = "Meta2", val = 99)
class Meta2 {

@What (description = "An annotation test method")
@MyAnno (str = "Testing", val = 100)
public static void myMeth()

Meta2 ob = new Meta2 () ;

try {
Annotation annos[] = ob.getClass() .getAnnotations() ;

// Display all annotations for Meta2.
System.out.println("All annotations for Meta2:");
for (Annotation a : annos)

System.out.println(a) ;

System.out.println() ;
// Display all annotations for myMeth.
Method m = ob.getClass().getMethod ("myMeth") ;

annos = m.getAnnotations() ;

System.out.println("All annotations for myMeth:");
for (Annotation a : annos)

211

218

Part I: The Java Language

System.out.println(a) ;

} catch (NoSuchMethodException exc) {
System.out .println ("Method Not Found.") ;
}

}

public static void main(String argsl[]) {
myMeth () ;

}
}

The output is shown here:

All annotations for Meta2:
@What (description=An annotation test class)
@MyAnno (str=Meta2, val=99)

All annotations for myMeth:
@What (description=An annotation test method)
@MyAnno (str=Testing, val=100)

The program uses getAnnotations() to obtain an array of all annotations associated
with the Meta2 class and with the myMeth() method. As explained, getAnnotations()
returns an array of Annotation objects. Recall that Annotation is a super-interface of all
annotation interfaces and that it overrides toString() in Object. Thus, when a reference to
an Annotation is output, its toString() method is called to generate a string that describes
the annotation, as the preceding output shows.

The AnnotatedElement Interface

The methods getAnnotation() and getAnnotations() used by the preceding examples are
defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This
interface supports reflection for annotations and is implemented by the classes Method, Field,
Constructor, Class, and Package.

In addition to getAnnotation() and getAnnotations(), AnnotatedElement defines two
other methods. The first is getDeclared Annotations(), which has this general form:

Annotation[] getDeclared Annotations()

It returns all non-inherited annotations present in the invoking object. The second is
isAnnotationPresent(), which has this general form:

boolean isAnnotationPresent(Class annoType)

It returns true if the annotation specified by annoType is associated with the invoking
object. It returns false otherwise.

NOTE The methods getAnnotation() and isAnnotationPresent() make use of the generics
feature to ensure type safety. Because generics are not discussed until Chapter 14, their
signatures are shown in this chapter in their raw forms.

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata) 2179

Using Default Values

You can give annotation members default values that will be used if no value is specified
when the annotation is applied. A default value is specified by adding a default clause to
a member’s declaration. It has this general form:

type member(') default value;

Here, value must be of a type compatible with type.
Here is @MyAnno rewritten to include default values:

// An annotation type declaration that includes defaults.
@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str() default "Testing";

int val() default 9000;

}

This declaration gives a default value of “Testing” to str and 9000 to val. This means that
neither value needs to be specified when @MyAnno is used. However, either or both can be
given values if desired. Therefore, following are the four ways that @MyAnno can be used:

() // both str and val default
@MyAnno (str = "some string") // val defaults
@MyAnno (val 100) // str defaults
@MyAnno (str = "Testing", val = 100) // no defaults

@MyAnno

The following program demonstrates the use of default values in an annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration that includes defaults.
@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str() default "Testing";

int val() default 9000;

}
class Meta3 {

// Annotate a method using the default values.
@MyAnno ()
public static void myMeth()

Meta3 ob = new Meta3 () ;

// Obtain the annotation for this method
// and display the values of the members.

try {
Class ¢ = ob.getClass() ;

Method m = c.getMethod ("myMeth") ;

280 Part I: The Java Language

MyAnno anno = m.getAnnotation (MyAnno.class) ;

System.out.println(anno.stxr() + " " + anno.vall());
} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");
}

}

public static void main(String args[]) {
myMeth () ;

}
}

The output is shown here:

Testing 9000

Marker Annotations

A marker annotation is a special kind of annotation that contains no members. Its sole purpose
is to mark a declaration. Thus, its presence as an annotation is sufficient. The best way to
determine if a marker annotation is present is to use the method isAnnotationPresent(),
which is a defined by the AnnotatedElement interface.

Here is an example that uses a marker annotation. Because a marker interface contains
no members, simply determining whether it is present or absent is sufficient.

import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation.
@Retention (RetentionPolicy.RUNTIME)
@interface MyMarker { }

class Marker {

// Annotate a method using a marker.

// Notice that no () is needed.

@MyMarker

public static void myMeth()
Marker ob = new Marker() ;

try {
Method m = ob.getClass () .getMethod ("myMeth") ;

// Determine if the annotation is present.
if (m.isAnnotationPresent (MyMarker.class))
System.out.println ("MyMarker is present.");

} catch (NoSuchMethodException exc) {
System.out.println ("Method Not Found.") ;
}

}

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata) 281

public static void main(String args[]) {
myMeth () ;

}
}

The output, shown here, confirms that @MyMarker is present:
MyMarker is present.

In the program, notice that you do not need to follow @MyMarker with parentheses
when it is applied. Thus, @MyMarker is applied simply by using its name, like this:

@MyMarker

It is not wrong to supply an empty set of parentheses, but they are not needed.

Single-Member Annotations

A single-member annotation contains only one member. It works like a normal annotation
except that it allows a shorthand form of specifying the value of the member. When only one
member is present, you can simply specify the value for that member when the annotation
is applied—you don’t need to specify the name of the member. However, in order to use
this shorthand, the name of the member must be value.

Here is an example that creates and uses a single-member annotation:

import java.lang.annotation.*;
import java.lang.reflect.*;

// A single-member annotation.
@Retention (RetentionPolicy.RUNTIME)
@interface MySingle
int value(); // this variable name must be value
}

class Single {
// Annotate a method using a single-member annotation.
@MySingle (100)
public static void myMeth() {

Single ob = new Single() ;

try {
Method m = ob.getClass () .getMethod ("myMeth") ;

MySingle anno = m.getAnnotation (MySingle.class) ;
System.out.println (anno.value()); // displays 100

} catch (NoSuchMethodException exc) {
System.out.println ("Method Not Found.") ;
}

}

282

Part I: The Java Language

public static void main(String args[]) {
myMeth () ;

}
}

As expected, this program displays the value 100. In the program, @MySingle is used to
annotate myMeth(), as shown here:

@MySingle (100)

Notice that value = need not be specified.

You can use the single-value syntax when applying an annotation that has other members,
but those other members must all have default values. For example, here the value xyz is added,
with a default value of zero:

@interface SomeAnno {
int value() ;
int xyz () default 0;

}

In cases in which you want to use the default for xyz, you can apply @SomeAnno, as
shown next, by simply specifying the value of value by using the single-member syntax.

@SomeAnno (88)

In this case, xyz defaults to zero, and value gets the value 88. Of course, to specify a different
value for xyz requires that both members be explicitly named, as shown here:

@SomeAnno (value = 88, xyz = 99)

Remember, whenever you are using a single-member annotation, the name of that member
must be value.

The Built-In Annotations

Java defines many built-in annotations. Most are specialized, but seven are general purpose.
Of these, four are imported from java.lang.annotation: @Retention, @Documented, @Target,

and @Inherited. Three—@Override, @Deprecated, and @SuppressWarnings—are included
in java.lang. Each is described here.

@Retention
@Retention is designed to be used only as an annotation to another annotation. It specifies
the retention policy as described earlier in this chapter.

@Documented
The @Documented annotation is a marker interface that tells a tool that an annotation is to
be documented. It is designed to be used only as an annotation to an annotation declaration.

@Target
The @Target annotation specifies the types of declarations to which an annotation can be
applied. It is designed to be used only as an annotation to another annotation. @Target takes

Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata) 283

one argument, which must be a constant from the ElementType enumeration. This argument
specifies the types of declarations to which the annotation can be applied. The constants are
shown here along with the type of declaration to which they correspond.

Target Constant Annotation Can Be Applied To
ANNOTATION_TYPE Another annotation
CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration

You can specify one or more of these values in a @Target annotation. To specify multiple
values, you must specify them within a braces-delimited list. For example, to specify that an
annotation applies only to fields and local variables, you can use this @Target annotation:

@Target ({ ElementType.FIELD, ElementType.LOCAL VARIABLE })

@Inherited

@Inherited is a marker annotation that can be used only on another annotation declaration.
Furthermore, it affects only annotations that will be used on class declarations. @Inherited
causes the annotation for a superclass to be inherited by a subclass. Therefore, when a request
for a specific annotation is made to the subclass, if that annotation is not present in the subclass,
then its superclass is checked. If that annotation is present in the superclass, and if it is annotated
with @Inherited, then that annotation will be returned.

@Override

@Override is a marker annotation that can be used only on methods. A method annotated
with @Override must override a method from a superclass. If it doesn’t, a compile-time
error will result. It is used to ensure that a superclass method is actually overridden, and
not simply overloaded.

@Deprecated
@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has been
replaced by a newer form.

@SuppressWarnings

@SuppressWarnings specifies that one or more warnings that might be issued by the compiler
are to be suppressed. The warnings to suppress are specified by name, in string form. This
annotation can be applied to any type of declaration.

284

Part I: The Java Language

Some Restrictions

There are a number of restrictions that apply to annotation declarations. First, no annotation
can inherit another. Second, all methods declared by an annotation must be without parameters.
Furthermore, they must return one of the following;:

A primitive type, such as int or double
An object of type String or Class

An enum type

Another annotation type

An array of one of the preceding types

Annotations cannot be generic. In other words, they cannot take type parameters. (Generics
are described in Chapter 14.) Finally, annotation methods cannot specify a throws clause.

CHAPTER

1/0, Applets, and
Other Topics

package supports Java’s basic I/O (input/output) system, including file I/O. The applet

package supports applets. Support for both I/O and applets comes from Java’s core
API libraries, not from language keywords. For this reason, an in-depth discussion of these
topics is found in Part II of this book, which examines Java’s API classes. This chapter discusses
the foundation of these two subsystems so that you can see how they are integrated into the
Java language and how they fit into the larger context of the Java programming and execution
environment. This chapter also examines the last of Java’s keywords: transient, volatile,
instanceof, native, strictfp, and assert. It concludes by examining static import and by
describing another use for the this keyword.

This chapter introduces two of Java’s most important packages: io and applet. The io

1/0 Basics

As you may have noticed while reading the preceding 12 chapters, not much use has been
made of I/O in the example programs. In fact, aside from print() and println(), none of the
I/0O methods have been used significantly. The reason is simple: most real applications of
Java are not text-based, console programs. Rather, they are graphically oriented programs that
rely upon Java’s Abstract Window Toolkit (AWT) or Swing for interaction with the user.
Although text-based programs are excellent as teaching examples, they do not constitute an
important use for Java in the real world. Also, Java’s support for console I/O is limited and
somewhat awkward to use—even in simple example programs. Text-based console I/0O is
just not very important to Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible support
for I/0O as it relates to files and networks. Java’s I/O system is cohesive and consistent. In
fact, once you understand its fundamentals, the rest of the I/O system is easy to master.

285

286

Part I: The Java Language

Streams

Java programs perform I/O through streams. A stream is an abstraction that either produces
or consumes information. A stream is linked to a physical device by the Java I/O system.
All streams behave in the same manner, even if the actual physical devices to which they are
linked differ. Thus, the same 1/O classes and methods can be applied to any type of device.
This means that an input stream can abstract many different kinds of input: from a disk file,
a keyboard, or a network socket. Likewise, an output stream may refer to the console, a disk
file, or a network connection. Streams are a clean way to deal with input/output without
having every part of your code understand the difference between a keyboard and a network,
for example. Java implements streams within class hierarchies defined in the java.io package.

Byte Streams and Character Streams

Java defines two types of streams: byte and character. Byte streams provide a convenient
means for handling input and output of bytes. Byte streams are used, for example, when
reading or writing binary data. Character streams provide a convenient means for handling
input and output of characters. They use Unicode and, therefore, can be internationalized.
Also, in some cases, character streams are more efficient than byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus, all
I/0O was byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented
classes and methods were deprecated. This is why older code that doesn’t use character streams
should be updated to take advantage of them, where appropriate.

One other point: at the lowest level, all 1/O is still byte-oriented. The character-based
streams simply provide a convenient and efficient means for handling characters.

An overview of both byte-oriented streams and character-oriented streams is presented
in the following sections.

The Byte Stream Classes

Byte streams are defined by using two class hierarchies. At the top are two abstract classes:
InputStream and OutputStream. Each of these abstract classes has several concrete subclasses
that handle the differences between various devices, such as disk files, network connections,
and even memory buffers. The byte stream classes are shown in Table 13-1. A few of these
classes are discussed later in this section. Others are described in Part II. Remember, to use
the stream classes, you must import java.io.

The abstract classes InputStream and OutputStream define several key methods that
the other stream classes implement. Two of the most important are read() and write(),
which, respectively, read and write bytes of data. Both methods are declared as abstract
inside InputStream and OutputStream. They are overridden by derived stream classes.

The Character Stream Classes

Character streams are defined by using two class hierarchies. At the top are two abstract
classes, Reader and Writer. These abstract classes handle Unicode character streams. Java
has several concrete subclasses of each of these. The character stream classes are shown in
Table 13-2.

The abstract classes Reader and Writer define several key methods that the other stream
classes implement. Two of the most important methods are read() and write(), which read
and write characters of data, respectively. These methods are overridden by derived stream
classes.

Chapter 13: 1/0, Applets, and Other Topics

Stream Class

Meaning

BufferedInputStream

Buffered input stream

BufferedOutputStream Buffered output stream
ByteArraylnputStream Input stream that reads from a byte array
ByteArrayOutputStream |Output stream that writes to a byte array

DatalnputStream

An input stream that contains methods for reading the Java standard
data types

DataOutputStream

An output stream that contains methods for writing the Java standard
data types

FilelnputStream

Input stream that reads from a file

FileOutputStream

Output stream that writes to a file

FilterinputStream

Implements InputStream

FilterOutputStream

Implements OutputStream

InputStream

Abstract class that describes stream input

ObjectinputStream

Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output
PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream

Output stream that contains print() and printin()

PushbacklnputStream

Input stream that supports one-byte “unget,” which returns a byte to
the input stream

RandomAccessFile

Supports random access file |/0

SequencelnputStream

Input stream that is a combination of two or more input streams that
will be read sequentially, one after the other

TABLE 13-1

The Byte Stream Classes

Stream Class Meaning

BufferedReader Buffered input character stream
BufferedWriter Buffered output character stream
CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes to a character array
FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file
FilterReader Filtered reader

FilterWriter Filtered writer

TABLE 13-2 The Character Stream |/0 Classes

281

288

Part I:

The Java Language

Stream Class Meaning

InputStreamReader | Input stream that translates bytes to characters
LineNumberReader |Input stream that counts lines

OutputStreamWriter |Output stream that translates characters to bytes
PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and printin()
PushbackReader Input stream that allows characters to be returned to the input stream
Reader Abstract class that describes character stream input
StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output
TABLE 13-2 The Character Stream |/0 Classes (continued)

The Predefined Streams

As you know, all Java programs automatically import the java.lang package. This package
defines a class called System, which encapsulates several aspects of the run-time environment.
For example, using some of its methods, you can obtain the current time and the settings of
various properties associated with the system. System also contains three predefined stream
variables: in, out, and err. These fields are declared as public, static, and final within
System. This means that they can be used by any other part of your program and without
reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console. System.in
refers to standard input, which is the keyboard by default. System.err refers to the standard
error stream, which also is the console by default. However, these streams may be redirected
to any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are objects of
type PrintStream. These are byte streams, even though they typically are used to read and
write characters from and to the console. As you will see, you can wrap these within character-
based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use
System.err in much the same way. As explained in the next section, use of System.in is
a little more complicated.

Reading Console Input

In Java 1.0, the only way to perform console input was to use a byte stream, and older code
that uses this approach persists. Today, using a byte stream to read console input is still
technically possible, but doing so is not recommended. The preferred method of reading
console input is to use a character-oriented stream, which makes your program easier to
internationalize and maintain.

Chapter 13: 1/0, Applets, and Other Topics 289

In Java, console input is accomplished by reading from System.in. To obtain a character-
based stream that is attached to the console, wrap System.in in a BufferedReader object.
BufferedReader supports a buffered input stream. Its most commonly used constructor
is shown here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader that is being
created. Reader is an abstract class. One of its concrete subclasses is InputStreamReader,
which converts bytes to characters. To obtain an InputStreamReader object that is linked to
System.in, use the following constructor:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for inputStream.
Putting it all together, the following line of code creates a BufferedReader that is connected
to the keyboard:

BufferedReader br = new BufferedReader (new
InputStreamReader (System.in)) ;

After this statement executes, br is a character-based stream that is linked to the console
through System.in.

Reading Characters

To read a character from a BufferedReader, use read(). The version of read() that we will
be using is

int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it as
an integer value. It returns 3 when the end of the stream is encountered. As you can see,
it can throw an IOException.

The following program demonstrates read() by reading characters from the console
until the user types a “q.” Notice that any I/O exceptions that might be generated are
simply thrown out of main(). Such an approach is common when reading from the console,
but you can handle these types of errors yourself, if you chose.

// Use a BufferedReader to read characters from the console.
import java.io.*;

class BRRead {

public static void main(String argsl(])
throws IOException

{
char c¢;
BufferedReader br = new

BufferedReader (new InputStreamReader (System.in)) ;

System.out.println ("Enter characters, 'q' to quit.");

290

Part I: The Java Language

// read characters

do {
¢ = (char) br.read() ;
System.out.println(c) ;
} while(c != 'q');

}
}

Here is a sample run:

Enter characters, 'gq' to quit.
123abcg
1

Q0w wN

g

This output may look a little different from what you expected, because System.in is line
buffered, by default. This means that no input is actually passed to the program until you
press ENTER. As you can guess, this does not make read() particularly valuable for interactive
console input.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of the
BufferedReader class. Its general form is shown here:

String readLine() throws IOException

As you can see, it returns a String object.
The following program demonstrates BufferedReader and the readLine() method;
the program reads and displays lines of text until you enter the word “stop”:

// Read a string from console using a BufferedReader.
import java.io.*;

class BRReadLines ({

public static void main(String argsl([])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader (new

InputStreamReader (System.in)) ;

String str;

System.out.println ("Enter lines of text.");
System.out.println ("Enter 'stop' to quit.");
do {

str = br.readLine() ;

Chapter 13: 1/0, Applets, and Other Topics 291

System.out.println(str) ;
} while(!str.equals("stop"));

}
}

The next example creates a tiny text editor. It creates an array of String objects and then
reads in lines of text, storing each line in the array. It will read up to 100 lines or until you
enter “stop.” It uses a BufferedReader to read from the console.

// A tiny editor.
import java.io.*;

class TinyEdit {
public static void main(String args|[])
throws IOException
{

// create a BufferedReader using System.in
BufferedReader br = new BufferedReader (new

InputStreamReader (System.in)) ;
String str[] = new String[100];

System.out.println ("Enter lines of text.");
System.out.println ("Enter 'stop' to quit.");
for(int i=0; i<100; i++)

str[i] = br.readLine() ;

if (str[i] .equals("stop")) break;

}

System.out.println("\nHere is your file:");

// display the lines

for(int i=0; i<100; i++)
if (str[i] .equals("stop")) break;
System.out.println(str[i]) ;

}
}
}

Here is a sample run:

Enter lines of text.

Enter 'stop' to quit.

This is line one.

This is line two.

Java makes working with strings easy.
Just create String objects.

stop

Here is your file:

This is line one.

This is line two.

Java makes working with strings easy.
Just create String objects.

292

Part I: The Java Language

Writing Console Output

Console output is most easily accomplished with print() and println(), described earlier,
which are used in most of the examples in this book. These methods are defined by the
class PrintStream (which is the type of object referenced by System.out). Even though
System.out is a byte stream, using it for simple program output is still acceptable. However,
a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also implements
the low-level method write(). Thus, write() can be used to write to the console. The simplest
form of write() defined by PrintStream is shown here:

void write(int byteval)

This method writes to the stream the byte specified by byteval. Although byteval is declared
as an integer, only the low-order eight bits are written. Here is a short example that uses
write() to output the character “A” followed by a newline to the screen:

// Demonstrate System.out.write().
class WriteDemo {
public static void main(String argsl[]) {
int b;

b = 'A';
System.out.write (b) ;
System.out.write('\n') ;

}
}

You will not often use write() to perform console output (although doing so might be
useful in some situations), because print() and println() are substantially easier to use.

The PrintWriter Class

Although using System.out to write to the console is acceptable, its use is recommended
mostly for debugging purposes or for sample programs, such as those found in this book.
For real-world programs, the recommended method of writing to the console when using
Java is through a PrintWriter stream. PrintWriter is one of the character-based classes.
Using a character-based class for console output makes it easier to internationalize your
program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream, and flushOnNewline controls whether
Java flushes the output stream every time a println() method is called. If flushOnNewline is
true, flushing automatically takes place. If false, flushing is not automatic.

PrintWriter supports the print() and println() methods for all types including Object.
Thus, you can use these methods in the same way as they have been used with System.out.
If an argument is not a simple type, the PrintWriter methods call the object’s toString()
method and then print the result.

Chapter 13: 1/0, Applets, and Other Topics 293

To write to the console by using a PrintWriter, specify System.out for the output stream
and flush the stream after each newline. For example, this line of code creates a PrintWriter
that is connected to console output:

PrintWriter pw = new PrintWriter (System.out, true);
The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter
import java.io.*;

public class PrintWriterDemo {
public static void main(String argsl[]) {
PrintWriter pw = new PrintWriter (System.out, true);
pw.println("This is a string");
int i = -7;
pw.println (i) ;
double d = 4.5e-7;
pw.println(d) ;
}
}

The output from this program is shown here:

This is a string
-7
4 .5E-7

Remember, there is nothing wrong with using System.out to write simple text output
to the console when you are learning Java or debugging your programs. However, using a
PrintWriter will make your real-world applications easier to internationalize. Because no
advantage is gained by using a PrintWriter in the sample programs shown in this book, we
will continue to use System.out to write to the console.

Reading and Writing Files

Java provides a number of classes and methods that allow you to read and write files. In Java,
all files are byte-oriented, and Java provides methods to read and write bytes from and to a
file. However, Java allows you to wrap a byte-oriented file stream within a character-based
object. This technique is described in Part II. This chapter examines the basics of file I/O.

Two of the most often-used stream classes are FileInputStream and FileOutputStream,
which create byte streams linked to files. To open a file, you simply create an object of one of
these classes, specifying the name of the file as an argument to the constructor. While both
classes support additional, overridden constructors, the following are the forms that we will
be using:

FileInputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName) throws FileNotFoundException

294

Part I: The Java Language

Here, fileName specifies the name of the file that you want to open. When you create an
input stream, if the file does not exist, then FileNotFoundException is thrown. For output
streams, if the file cannot be created, then FileNotFoundException is thrown. When an
output file is opened, any preexisting file by the same name is destroyed.

When you are done with a file, you should close it by calling close(). It is defined by
both FileInputStream and FileOutputStream, as shown here:

void close() throws IOException

To read from a file, you can use a version of read() that is defined within FileInputStream.
The one that we will use is shown here:

int read() throws IOException

Each time that it is called, it reads a single byte from the file and returns the byte as an integer
value. read() returns + when the end of the file is encountered. It can throw an IOException.
The following program uses read() to input and display the contents of a text file, the name
of which is specified as a command-line argument. Note the try/catch blocks that handle
two errors that might occur when this program is used—the specified file not being found
or the user forgetting to include the name of the file. You can use this same approach
whenever you use command-line arguments. Other I/O exceptions that might occur
are simply thrown out of main(), which is acceptable for this simple example. However,
often you will want to handle all I/O exceptions yourself when working with files.

/* Display a text file.

To use this program, specify the name

of the file that you want to see.

For example, to see a file called TEST.TXT,
use the following command line.

java ShowFile TEST.TXT
*/
import java.io.*;

class ShowFile ({
public static void main(String argsl([])
throws IOException
{

int i;
FileInputStream fin;

try {
fin = new FileInputStream(args[0]) ;

} catch(FileNotFoundException e) {
System.out.println("File Not Found") ;
return;

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println ("Usage: ShowFile File");
return;

Chapter 13: 1/0, Applets, and Other Topics 295

// read characters until EOF is encountered

do {

i = fin.read() ;

if(i != -1) System.out.print ((char) 1i);
} while(i != -1);

fin.close() ;

To write to a file, you can use the write() method defined by FileOutputStream. Its
simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared as
an integer, only the low-order eight bits are written to the file. If an error occurs during
writing, an IOException is thrown. The next example uses write() to copy a text file:

/* Copy a text file.

To use this program, specify the name

of the source file and the destination file.
For example, to copy a file called FIRST.TXT
to a file called SECOND.TXT, use the following
command line.

java CopyFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CopyFile {
public static void main(String argsl[])
throws IOException
{

int 1i;
FileInputStream fin;
FileOutputStream fout;

try {
// open input file
try {
fin = new FileInputStream(args[0]) ;
} catch(FileNotFoundException e) {
System.out.println("Input File Not Found") ;
return;

}

296 Part I: The Java Language

// open output file

try {
fout = new FileOutputStream(args[1l]) ;

} catch(FileNotFoundException e)
System.out.println ("Error Opening Output File");
return;

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Usage: CopyFile From To") ;

return;

}

// Copy File

try {
do {
i = fin.read() ;
if(i !'= -1) fout.write(i);
} while(i t!= -1);

} catch(IOException e) {
System.out.println("File Erroxr");

}

fin.close() ;
fout.close() ;

Notice the way that potential I/O errors are handled in this program. Unlike some other
computer languages, including C and C++, which use error codes to report file errors, Java
uses its exception handling mechanism. Not only does this make file handling cleaner, but
it also enables Java to easily differentiate the end-of-file condition from file errors when
input is being performed. In C/C++, many input functions return the same value when
an error occurs and when the end of the file is reached. (That is, in C/C++, an EOF condition
often is mapped to the same value as an input error.) This usually means that the programmer
must include extra program statements to determine which event actually occurred. In Java,
errors are passed to your program via exceptions, not by values returned by read().
Thus, when read() returns %, it means only one thing: the end of the file has been
encountered.

Applet Fundamentals

All of the preceding examples in this book have been Java console-based applications. However,
these types of applications constitute only one class of Java programs. Another type of program
is the applet. As mentioned in Chapter 1, applets are small applications that are accessed on an
Internet server, transported over the Internet, automatically installed, and run as part of a web
document. After an applet arrives on the client, it has limited access to resources so that it
can produce a graphical user interface and run complex computations without introducing
the risk of viruses or breaching data integrity.

Chapter 13: 1/0, Applets, and Other Topics

Many of the issues connected with the creation and use of applets are found in Part II,
when the applet package is examined and also when Swing is described in Part III. However,
the fundamentals connected to the creation of an applet are presented here, because applets
are not structured in the same way as the programs that have been used thus far. As you
will see, applets differ from console-based applications in several key areas.

Let’s begin with the simple applet shown here:

import java.awt.*;
import java.applet.*;

public class SimpleApplet extends Applet {
public void paint (Graphics g) {
g.drawString ("A Simple Applet", 20, 20);
}
}

This applet begins with two import statements. The first imports the Abstract Window
Toolkit (AWT) classes. Applets interact with the user (either directly or indirectly) through
the AWT, not through the console-based I/O classes. The AWT contains support for a
window-based, graphical user interface. As you might expect, the AWT is quite large
and sophisticated, and a complete discussion of it consumes several chapters in Part II of
this book. Fortunately, this simple applet makes very limited use of the AWT. (Applets can
also use Swing to provide the graphical user interface, but this approach is described later in
this book.) The second import statement imports the applet package, which contains the
class Applet. Every applet that you create must be a subclass of Applet.

The next line in the program declares the class SimpleApplet. This class must be declared
as public, because it will be accessed by code that is outside the program.

Inside SimpleApplet, paint() is declared. This method is defined by the AWT and must
be overridden by the applet. paint() is called each time that the applet must redisplay its
output. This situation can occur for several reasons. For example, the window in which the
applet is running can be overwritten by another window and then uncovered. Or, the applet
window can be minimized and then restored. paint() is also called when the applet begins
execution. Whatever the cause, whenever the applet must redraw its output, paint() is called.
The paint() method has one parameter of type Graphics. This parameter contains the graphics
context, which describes the graphics environment in which the applet is running. This context
is used whenever output to the applet is required.

Inside paint() is a call to drawString(), which is a member of the Graphics class.
This method outputs a string beginning at the specified X,Y location. It has the following
general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left
corner is location 0,0. The call to drawString() in the applet causes the message “A Simple
Applet” to be displayed beginning at location 20,20.

Notice that the applet does not have a main() method. Unlike Java programs, applets
do not begin execution at main(). In fact, most applets don’t even have a main() method.
Instead, an applet begins execution when the name of its class is passed to an applet viewer
or to a network browser.

297

298

Part I: The Java Language

After you enter the source code for SimpleApplet, compile in the same way that you
have been compiling programs. However, running SimpleApplet involves a different process.
In fact, there are two ways in which you can run an applet:

® Executing the applet within a Java-compatible web browser.

¢ Using an applet viewer, such as the standard tool, appletviewer. An applet viewer
executes your applet in a window. This is generally the fastest and easiest way to
test your applet.

Each of these methods is described next.

To execute an applet in a web browser, you need to write a short HTML text file that
contains a tag that loads the applet. Currently, Sun recommends using the APPLET tag for
this purpose. Here is the HTML file that executes SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>
</applet>

The width and height statements specify the dimensions of the display area used by the
applet. (The APPLET tag contains several other options that are examined more closely in
Part II.) After you create this file, you can execute your browser and then load this file, which
causes SimpleApplet to be executed.

To execute SimpleApplet with an applet viewer, you may also execute the HTML file
shown earlier. For example, if the preceding HTML file is called RunApp.html, then the
following command line will run SimpleApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing. Simply
include a comment at the head of your Java source code file that contains the APPLET tag.
By doing so, your code is documented with a prototype of the necessary HTML statements,
and you can test your compiled applet merely by starting the applet viewer with your Java
source code file. If you use this method, the SimpleApplet source file looks like this:

import java.awt.*;

import java.applet.*;

/*

<applet code="SimpleApplet" width=200 height=60>
</applet>

*/

public class SimpleApplet extends Applet
public void paint (Graphics g) {
g.drawString ("A Simple Applet", 20, 20);
1
}

With this approach, you can quickly iterate through applet development by using these
three steps:

1. Edit a Java source file.

2. Compile your program.

Chapter 13: 1/0, Applets, and Other Topics 299

3. Execute the applet viewer, specifying the name of your applet’s source file. The applet
viewer will encounter the APPLET tag within the comment and execute your applet.

The window produced by SimpleApplet, as displayed by the applet viewer, is shown in
the following illustration:

o Applet Yiewern: Simp...

Applet

A Simple Applet

Applet started.

While the subject of applets is more fully discussed later in this book, here are the key
points that you should remember now:

® Applets do not need a main() method.
® Applets must be run under an applet viewer or a Java-compatible browser.

¢ User I/0O is not accomplished with Java’s stream I/O classes. Instead, applets use
the interface provided by the AWT or Swing.

The transient and volatile Modifiers

Java defines two interesting type modifiers: transient and volatile. These modifiers are used
to handle somewhat specialized situations.

When an instance variable is declared as transient, then its value need not persist when
an object is stored. For example:

class T {
transient int a; // will not persist
int b; // will persist

}

Here, if an object of type T is written to a persistent storage area, the contents of a would
not be saved, but the contents of b would.

The volatile modifier tells the compiler that the variable modified by volatile can be
changed unexpectedly by other parts of your program. One of these situations involves
multithreaded programs. (You saw an example of this in Chapter 11.) In a multithreaded
program, sometimes two or more threads share the same variable. For efficiency considerations,
each thread can keep its own, private copy of such a shared variable. The real (or master) copy of
the variable is updated at various times, such as when a synchronized method is entered. While
this approach works fine, it may be inefficient at times. In some cases, all that really matters is
that the master copy of a variable always reflects its current state. To ensure this, simply specify
the variable as volatile, which tells the compiler that it must always use the master copy of a
volatile variable (or, at least, always keep any private copies up-to-date with the master copy,
and vice versa). Also, accesses to the master variable must be executed in the precise order in
which they are executed on any private copy.

300

Part I: The Java Language

Using instanceof

Sometimes, knowing the type of an object during run time is useful. For example, you might
have one thread of execution that generates various types of objects, and another thread
that processes these objects. In this situation, it might be useful for the processing thread to
know the type of each object when it receives it. Another situation in which knowledge of
an object’s type at run time is important involves casting. In Java, an invalid cast causes a
run-time error. Many invalid casts can be caught at compile time. However, casts involving
class hierarchies can produce invalid casts that can be detected only at run time. For example,
a superclass called A can produce two subclasses, called B and C. Thus, casting a B object
into type A or casting a C object into type A is legal, but casting a B object into type C (or
vice versa) isn’t legal. Because an object of type A can refer to objects of either B or C, how
can you know, at run time, what type of object is actually being referred to before attempting
the cast to type C? It could be an object of type A, B, or C. If it is an object of type B, a run-
time exception will be thrown. Java provides the run-time operator instanceof to answer
this question.

The instanceof operator has this general form:

objref instanceof type

Here, objref is a reference to an instance of a class, and type is a class type. If objref is of the
specified type or can be cast into the specified type, then the instanceof operator evaluates to
true. Otherwise, its result is false. Thus, instanceof is the means by which your program can
obtain run-time type information about an object.

The following program demonstrates instanceof:

// Demonstrate instanceof operator.
class A {
int i, 3;

}

class B {
int i, j;

}

class C extends A
int k;

}

class D extends A {
int k;

}

class InstanceOf (
public static void main(String argsl[]) {

A a = new A();
B b = new B();
C ¢ = new C();
D d = new D();

Chapter 13: 1/0, Applets, and Other Topics 301

if (a instanceof A)

System.out.println("a is instance of A");
if (b instanceof B)

System.out.println("b is instance of B");
if (¢ instanceof C)

System.out.println("c is instance of C");
if (¢ instanceof A)

System.out.println("c can be cast to A");

if (a instanceof Q)
System.out.println("a can be cast to C");

System.out.println() ;

// compare types of derived types
A ob;

ob = d; // A reference to d
System.out.println("ob now refers to d4d");
if (ob instanceof D)

System.out.println("ob is instance of D");

System.out.println() ;

ob = ¢; // A reference to c
System.out.println("ob now refers to c");

if (ob instanceof D)

System.out.println("ob can be cast to D");
else

System.out.println("ob cannot be cast to D");

if (ob instanceof A)
System.out.println("ob can be cast to A");

System.out .println() ;

// all objects can be cast to Object
if (a instanceof Object)

System.out.println("a may be cast to Object");
if (b instanceof Object)

System.out.println("b may be cast to Object");
if (¢ instanceof Object)

System.out.println("c may be cast to Object");
if (d instanceof Object)

System.out.println("d may be cast to Object");

}
}

The output from this program is shown here:

a is instance of A
b is instance of B

302 Partl: The Java Language

c is instance of C
Cc can be cast to A

ob now refers to d
ob is instance of D

ob now refers to c¢
ob cannot be cast to D
ob can be cast to A

a may be cast to Object
b may be cast to Object
c may be cast to Object
d may be cast to Object

The instanceof operator isn’t needed by most programs, because, generally, you know
the type of object with which you are working. However, it can be very useful when you're
writing generalized routines that operate on objects of a complex class hierarchy.

strictfp

A relatively new keyword is strictfp. With the creation of Java 2, the floating-point computation
model was relaxed slightly. Specifically, the new model does not require the truncation of
certain intermediate values that occur during a computation. This prevents overflow or
underflow in some cases. By modifying a class or a method with strictfp, you ensure that
floating-point calculations (and thus all truncations) take place precisely as they did in
earlier versions of Java. When a class is modified by strictfp, all the methods in the class
are also modified by strictfp automatically.

For example, the following fragment tells Java to use the original floating-point model
for calculations in all methods defined within MyClass:

strictfp class MyClass { //...

Frankly, most programmers never need to use strictfp, because it affects only a very small
class of problems.

Native Methods

Although it is rare, occasionally you may want to call a subroutine that is written in a
language other than Java. Typically, such a subroutine exists as executable code for the CPU
and environment in which you are working—that is, native code. For example, you may
want to call a native code subroutine to achieve faster execution time. Or, you may want to
use a specialized, third-party library, such as a statistical package. However, because Java
programs are compiled to bytecode, which is then interpreted (or compiled on-the-fly) by
the Java run-time system, it would seem impossible to call a native code subroutine from
within your Java program. Fortunately, this conclusion is false. Java provides the native

Chapter 13: 1/0, Applets, and Other Topics

keyword, which is used to declare native code methods. Once declared, these methods can
be called from inside your Java program just as you call any other Java method.

To declare a native method, precede the method with the native modifier, but do not
define any body for the method. For example:

public native int meth() ;

After you declare a native method, you must write the native method and follow a rather
complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code with a
Java program is called the Java Native Interface (JNI). A detailed description of the NI is
beyond the scope of this book, but the following description provides sufficient information
for most applications.

NOTE The precise steps that you need to follow will vary between different Java environments.
They also depend on the language that you are using to implement the native method. The
following discussion assumes a Windows environment. The language used to implement the
native method is C.

The easiest way to understand the process is to work through an example. To begin, enter
the following short program, which uses a native method called test():

// A simple example that uses a native method.
public class NativeDemo {
int i;
public static void main(String argsl[]) {
NativeDemo ob = new NativeDemo () ;

ob.i = 10;

System.out.println("This is ob.i before the native method:" +
ob.1i);

ob.test(); // call a native method

System.out.println("This is ob.i after the native method:" +
ob.1i);

}

// declare native method
public native void test () ;

// load DLL that contains static method
static {
System. loadLibrary ("NativeDemo") ;

}
}

Notice that the test() method is declared as native and has no body. This is the method that
we will implement in C shortly. Also notice the static block. As explained earlier in this book,
a static block is executed only once, when your program begins execution (or, more precisely,
when its class is first loaded). In this case, it is used to load the dynamic link library that
contains the native implementation of test(). (You will see how to create this library soon.)

303

304

Part I: The Java Language

The library is loaded by the loadLibrary() method, which is part of the System class.
This is its general form:

static void loadLibrary(String filename)

Here, filename is a string that specifies the name of the file that holds the library. For the
Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce NativeDemo.class. Next, you must
use javah.exe to produce one file: NativeDemo.h. (javah.exe is included in the JDK.) You
will include NativeDemo.h in your implementation of test(). To produce NativeDemo.h,
use the following command:

javah -jni NativeDemo

This command produces a header file called NativeDemo.h. This file must be included in
the C file that implements test(). The output produced by this command is shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeDemo */

#ifndef Included NativeDemo
#define _Included_ NativeDemo

#ifdef _ _cplusplus
extern "C" {
#endif
/*
* Class: NativeDemo
* Method: test
* Signature: ()V
*/

JNIEXPORT void JNICALL Java NativeDemo_test
(IJNIEnv *, jobject);

#ifdef _ cplusplus

}

#endif
#endif

Pay special attention to the following line, which defines the prototype for the test()
function that you will create:

JNIEXPORT void JNICALL Java NativeDemo test (JNIEnv *, jobject);

Notice that the name of the function is Java_NativeDemo_test(). You must use this as the
name of the native function that you implement. That is, instead of creating a C function called
test(), you will create one called Java_NativeDemo_test(). The NativeDemo component of the
prefix is added because it identifies the test() method as being part of the NativeDemo
class. Remember, another class may define its own native test() method that is completely
different from the one declared by NativeDemo. Including the class name in the prefix
provides a way to differentiate between differing versions. As a general rule, native functions
will be given a name whose prefix includes the name of the class in which they are declared.

Chapter 13: 1/0, Applets, and Other Topics

After producing the necessary header file, you can write your implementation of test()
and store it in a file named NativeDemo.c:

/* This file contains the C version of the
test () method.
*/

#include <jni.h>
#include "NativeDemo.h"
#include <stdio.h>

JNIEXPORT void JNICALL Java NativeDemo test (JNIEnv *env, jobject obj)

{

jclass cls;
jfieldID fid;
jint 1i;

printf ("Starting the native method.\n") ;

cls = (*env)->GetObjectClass (env, obj);
fid = (*env)->GetFieldID(env, cls, "i", "I");
if (fid == 0) {
printf ("Could not get field id.\n");
return;
1
i = (*env)->GetIntField(env, obj, fid);

printf("i = %d\n", 1);
(*env) ->SetIntField(env, obj, fid, 2*i);
printf ("Ending the native method.\n") ;

}

Notice that this file includes jni.h, which contains interfacing information. This file is provided
by your Java compiler. The header file NativeDemo.h was created by javah earlier.

In this function, the GetObjectClass() method is used to obtain a C structure that has
information about the class NativeDemo. The GetFieldID() method returns a C structure
with information about the field named “i” for the class. GetIntField() retrieves the original
value of that field. SetIntField() stores an updated value in that field. (See the file jni.h for
additional methods that handle other types of data.)

After creating NativeDemo.c, you must compile it and create a DLL. To do this by using the
Microsoft C/C++ compiler, use the following command line. (You might need to specify the
path to jni.h and its subordinate file jni_md.h.)

Cl /LD NativeDemo.c

This produces a file called NativeDemo.dll. Once this is done, you can execute the Java
program, which will produce the following output:

This is ob.i before the native method: 10
Starting the native method.

i =10

Ending the native method.

This is ob.i after the native method: 20

305

306

Part I: The Java Language

Problems with Native Methods

Native methods seem to offer great promise, because they enable you to gain access to an
existing base of library routines, and they offer the possibility of faster run-time execution.
But native methods also introduce two significant problems:

¢ Potential security risk Because a native method executes actual machine code,
it can gain access to any part of the host system. That is, native code is not confined
to the Java execution environment. This could allow a virus infection, for example.
For this reason, applets cannot use native methods. Also, the loading of DLLs can
be restricted, and their loading is subject to the approval of the security manager.

® Loss of portability Because the native code is contained in a DLL, it must be
present on the machine that is executing the Java program. Further, because each
native method is CPU- and operating systemeependent, each DLL is inherently
nonportable. Thus, a Java application that uses native methods will be able to run
only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java programs
nonportable and pose significant security risks.

Using assert

Another relatively new addition to Java is the keyword assert. It is used during program
development to create an assertion, which is a condition that should be true during the
execution of the program. For example, you might have a method that should always return
a positive integer value. You might test this by asserting that the return value is greater than
zero using an assert statement. At run time, if the condition actually is true, no other action
takes place. However, if the condition is false, then an AssertionError is thrown. Assertions
are often used during testing to verify that some expected condition is actually met. They are
not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is true,
then the assertion is true and no other action takes place. If the condition is false, then the
assertion fails and a default AssertionError object is thrown.

The second form of assert is shown here:

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This value is
converted to its string format and displayed if an assertion fails. Typically, you will specify
a string for expr, but any non-void expression is allowed as long as it defines a reasonable
string conversion.

Chapter 13: 1/0, Applets, and Other Topics

Here is an example that uses assert. It verifies that the return value of getnum() is positive.

// Demonstrate assert.
class AssertDemo {
static int val = 3;

// Return an integer.
static int getnum() {
return val--;

}

public static void main(String argsl([])

{

int n;

for(int i=0; i < 10; i++) {
n = getnum() ;

assert n > 0; // will fail when n is 0

System.out.println("n is " + n);

}
}
}

To enable assertion checking at run time, you must specify the -ea option. For example,
to enable assertions for AssertDemo, execute it using this line:

java -ea AssertDemo

After compiling and running as just described, the program creates the following output:

n is 3

n is 2

nis 1

Exception in thread "main" java.lang.AssertionError
at AssertDemo.main (AssertDemo.java:17)

In main(), repeated calls are made to the method getnum(), which returns an integer value.
The return value of getnum() is assigned to n and then tested using this assert statement:

assert n > 0; // will fail when n is 0

This statement will fail when n equals 0, which it will after the fourth call. When this happens,
an exception is thrown.

307

308

Part I: The Java Language

As explained, you can specify the message displayed when an assertion fails. For example,
if you substitute

assert n > 0 : "n is negativel";

for the assertion in the preceding program, then the following output will be generated:

nis 3
n is 2
nis 1
Exception in thread "main" java.lang.AssertionError: n is
negative!
at AssertDemo.main (AssertDemo.java:17)

One important point to understand about assertions is that you must not rely on them
to perform any action actually required by the program. The reason is that normally, released
code will be run with assertions disabled. For example, consider this variation of the preceding
program:

// A poor way to use assert!!!
class AssertDemo {
// get a random number generator
static int val = 3;

// Return an integer.
static int getnum() {
return val--;

}

public static void main(String argsl([])

{

int n = 0;
for(int i=0; i < 10; i++) {
assert (n = getnum()) > 0; // This is not a good idea!

System.out.println("n is " + n);
}
}
}

In this version of the program, the call to getnum() is moved inside the assert statement.
Although this works fine if assertions are enabled, it will cause a malfunction when assertions
are disabled, because the call to getnum() will never be executed! In fact, n must now be
initialized, because the compiler will recognize that it might not be assigned a value by the
assert statement.

Assertions are a good addition to Java because they streamline the type of error checking
that is common during development. For example, prior to assert, if you wanted to verify that
n was positive in the preceding program, you had to use a sequence of code similar to this:

Chapter 13: 1/0, Applets, and Other Topics 309

if(n < 0) {
System.out.println("n is negative!");
return; // or throw an exception

}

With assert, you need only one line of code. Furthermore, you don’t have to remove the
assert statements from your released code.

Assertion Enabling and Disabling Options

When executing code, you can disable assertions by using the -da option. You can enable or
disable a specific package by specifying its name after the -ea or -da option. For example, to
enable assertions in a package called MyPack, use

-ea:MyPack
To disable assertions in MyPack, use

-da:MyPack

To enable or disable all subpackages of a package, follow the package name with three dots.
For example,

-ea:MyPack. ..

You can also specify a class with the -ea or -da option. For example, this enables
AssertDemo individually:

-ea:AssertDemo

Static Import

JDK 5 added a new feature to Java called static import that expands the capabilities of the
import keyword. By following import with the keyword static, an import statement can
be used to import the static members of a class or interface. When using static import, it is
possible to refer to static members directly by their names, without having to qualify them
with the name of their class. This simplifies and shortens the syntax required to use a static
member.

To understand the usefulness of static import, let’s begin with an example that does
not use it. The following program computes the hypotenuse of a right triangle. It uses two
static methods from Java’s built-in math class Math, which is part of java.lang. The first is
Math.pow(), which returns a value raised to a specified power. The second is Math.sqrt(),
which returns the square root of its argument.

// Compute the hypotenuse of a right triangle.
class Hypot {
public static void main(String argsl[]) {
double sidel, side2;
double hypot;

310

Part I: The Java Language

sidel 3.0;
side2 4.0;

// Notice how sqgrt() and pow() must be qualified by

// their class name, which is Math.

hypot = Math.sqgrt (Math.pow(sidel, 2) +
Math.pow(side2, 2));

System.out.println("Given sides of lengths " +

sidel + " and " + side2 +
" the hypotenuse is " +
hypot) ;

Because pow() and sqrt() are static methods, they must be called through the use of
their class’ name, Math. This results in a somewhat unwieldy hypotenuse calculation:

hypot = Math.sqgrt (Math.pow(sidel, 2) +
Math.pow (side2, 2));

As this simple example illustrates, having to specify the class name each time pow() or
sqrt() (or any of Java’s other math methods, such as sin(), cos(), and tan()) is used can
grow tedious.

You can eliminate the tedium of specifying the class name through the use of static
import, as shown in the following version of the preceding program:

// Use static import to bring sqrt() and pow() into view.
import static java.lang.Math.sqgrt;
import static java.lang.Math.pow;

// Compute the hypotenuse of a right triangle.
class Hypot {
public static void main(String argsl[]) {
double sidel, side2;
double hypot;

sidel = 3.0;
side2 = 4.0;
// Here, sqgrt() and pow() can be called by themselves,

// without their class name.
hypot = sgrt(pow(sidel, 2) + pow(side2, 2));

System.out.println ("Given sides of lengths " +
sidel + " and " + side2 +
" the hypotenuse is " +
hypot) ;

Chapter 13: 1/0, Applets, and Other Topics

In this version, the names sqrt and pow are brought into view by these static import
statements:

import static java.lang.Math.sqgrt;
import static java.lang.Math.pow;

After these statements, it is no longer necessary to qualify sqrt() or pow() with their class name.

Therefore, the hypotenuse calculation can more conveniently be specified, as shown here:
hypot = sqgrt(pow(sidel, 2) + pow(side2, 2));

As you can see, this form is considerably more readable.
There are two general forms of the import static statement. The first, which is used by
the preceding example, brings into view a single name. Its general form is shown here:

import static pkg.type-name.static-member-name;

Here, type-name is the name of a class or interface that contains the desired static member. Its full
package name is specified by pkg. The name of the member is specified by static-member-name.

The second form of static import imports all static members of a given class or interface.
Its general form is shown here:

import static pkg.type-name.*;

If you will be using many static methods or fields defined by a class, then this form lets you
bring them into view without having to specify each individually. Therefore, the preceding

program could have used this single import statement to bring both pow() and sqrt() (and
all other static members of Math) into view:

import static java.lang.Math.*;

Of course, static import is not limited just to the Math class or just to methods. For example,
this brings the static field System.out into view:

import static java.lang.System.out;

After this statement, you can output to the console without having to qualify out with
System, as shown here:

out.println("After importing System.out, you can use out directly.");

Whether importing System.out as just shown is a good idea is subject to debate. Although
it does shorten the statement, it is no longer instantly clear to anyone reading the program
that the out being referred to is System.out.

One other point: in addition to importing the static members of classes and interfaces
defined by the Java API, you can also use static import to import the static members of classes
and interfaces that you create.

311

312

Part I: The Java Language

As convenient as static import can be, it is important not to abuse it. Remember, the reason
that Java organizes its libraries into packages is to avoid namespace collisions. When you
import static members, you are bringing those members into the global namespace. Thus,
you are increasing the potential for namespace conflicts and for the inadvertent hiding of
other names. If you are using a static member once or twice in the program, it’s best not to
import it. Also, some static names, such as System.out, are so recognizable that you might
not want to import them. Static import is designed for those situations in which you are using
a static member repeatedly, such as when performing a series of mathematical computations.
In essence, you should use, but not abuse, this feature.

Invoking Overloaded Constructors Through this()

When working with overloaded constructors, it is sometimes useful for one constructor to
invoke another. In Java, this is accomplished by using another form of the this keyword.
The general form is shown here:

this(arg-list)

When this() is executed, the overloaded constructor that matches the parameter list
specified by arg-list is executed first. Then, if there are any statements inside the original
constructor, they are executed. The call to this() must be the first statement within the
constructor.

To understand how this() can be used, let's work through a short example. First,
consider the following class that does not use this():

class MyClass {
int a;
int b;

// initialize a and b individually
MyClass (int i, int j) {

a = 1i;

b = 73;

}

// initialize a and b to the same value
MyClass (int i) {

a = 1;

b = 1i;
1
// give a and b default values of 0
MyClass()

a = 0;

b = 0;

}
}

Chapter 13: 1/0, Applets, and Other Topics

This class contains three constructors, each of which initializes the values of a and b. The
first is passed individual values for a and b. The second is passed just one value, which is
assigned to both a and b. The third gives a and b default values of zero.

By using this(), it is possible to rewrite MyClass as shown here:

class MyClass {
int a;
int b;

// initialize a and b individually
MyClass (int i, int j) {

a = 1i;

b = j;

}

// initialize a and b to the same value
MyClass (int i) {
this(i, 1); // invokes MyClass (i, 1)

}

// give a and b default values of 0
MyClass()
this(0); // invokes MyClass (0)
1
}

In this version of MyClass, the only constructor that actually assigns values to the a and
b fields is MyClass(int, int). The other two constructors simply invoke that constructor
(either directly or indirectly) through this(). For example, consider what happens when this
statement executes:

MyClass mc = new MyClass (8) ;

The call to MyClass(8) causes this(8, 8) to be executed, which translates into a call to
MyClass(8, 8), because this is the version of the MyClass constructor whose parameter list
matches the arguments passed via this(). Now, consider the following statement, which
uses the default constructor:

MyClass mc2 = new MyClass() ;

In this case, this(0) is called. This causes MyClass(0) to be invoked because it is the
constructor with the matching parameter list. Of course, MyClass(0) then calls MyClass(0,
0) as just described.

One reason why invoking overloaded constructors through this() can be useful is that it
can prevent the unnecessary duplication of code. In many cases, reducing duplicate code
decreases the time it takes to load your class because often the object code is smaller. This is
especially important for programs delivered via the Internet in which load times are an
issue. Using this() can also help structure your code when constructors contain a large
amount of duplicate code.

313

314

Part I: The Java Language

However, you need to be careful. Constructors that call this() will execute a bit slower
than those that contain all of their initialization code inline. This is because the call and
return mechanism used when the second constructor is invoked adds overhead. If your
class will be used to create only a handful of objects, or if the constructors in the class that
call this() will be seldom used, then this decrease in run-time performance is probably
insignificant. However, if your class will be used to create a large number of objects (on the
order of thousands) during program execution, then the negative impact of the increased
overhead could be meaningful. Because object creation affects all users of your class, there
will be cases in which you must carefully weigh the benefits of faster load time against the
increased time it takes to create an object.

Here is another consideration: for very short constructors, such as those used by MyClass,
there is often little difference in the size of the object code whether this() is used or not.
(Actually, there are cases in which no reduction in the size of the object code is achieved.)
This is because the bytecode that sets up and returns from the call to this() adds instructions
to the object file. Therefore, in these types of situations, even though duplicate code is
eliminated, using this() will not obtain significant savings in terms of load time. However,
the added cost in terms of overhead to each object’s construction will still be incurred.
Therefore, this() is most applicable to constructors that contain large amounts of initialization
code, not for those that simply set the value of a handful of fields.

There are two restrictions you need to keep in mind when using this(). First, you cannot
use any instance variable of the constructor’s class in a call to this(). Second, you cannot use
super() and this() in the same constructor because each must be the first statement in the
constructor.

CHAPTER
Generics

that has had the most profound impact is generics. Introduced by JDK 5, generics changed

Java in two important ways. First, it added a new syntactical element to the language.
Second, it caused changes to many of the classes and methods in the core APIL Because generics
represented such a large change to the language, some programmers were reluctant to adopt its
use. However, with the release of JDK 6, generics can no longer be ignored. Simply put, if you
will be programming in Java SE 6, you will be using generics. Fortunately, generics are not
difficult to use, and they provide significant benefits for the Java programmer.

Through the use of generics, it is possible to create classes, interfaces, and methods that
will work in a type-safe manner with various kinds of data. Many algorithms are logically the
same no matter what type of data they are being applied to. For example, the mechanism that
supports a stack is the same whether that stack is storing items of type Integer, String, Object,
or Thread. With generics, you can define an algorithm once, independently of any specific
type of data, and then apply that algorithm to a wide variety of data types without any additional
effort. The expressive power generics add to the language fundamentally changes the way
that Java code is written.

Perhaps the one feature of Java that has been most significantly affected by generics is
the Collections Framework. The Collections Framework is part of the Java API and is described
in detail in Chapter 17, but a brief mention is useful now. A collection is a group of objects.
The Collections Framework defines several classes, such as lists and maps, that manage
collections. The collection classes have always been able to work with any type of object.
The benefit that generics add is that the collection classes can now be used with complete
type safety. Thus, in addition to providing a powerful, new language element, generics also
enabled an existing feature to be substantially improved. This is why generics represent such
an important addition to Java.

This chapter describes the syntax, theory, and use of generics. It also shows how generics
provide type safety for some previously difficult cases. Once you have completed this chapter,
you will want to examine Chapter 17, which covers the Collections Framework. There you
will find many examples of generics at work.

Since the original 1.0 release in 1995, many new features have been added to Java. The one

REMEMBER Generics were added by JDK 5. Source code using generics cannot be compiled by
earlier versions of javac.

315

316

Part I: The Java Language

What Are Generics?

At its core, the term generics means parameterized types. Parameterized types are important
because they enable you to create classes, interfaces, and methods in which the type of data
upon which they operate is specified as a parameter. Using generics, it is possible to create
a single class, for example, that automatically works with different types of data. A class,
interface, or method that operates on a parameterized type is called generic, as in generic class
or generic method.

It is important to understand that Java has always given you the ability to create generalized
classes, interfaces, and methods by operating through references of type Object. Because Object
is the superclass of all other classes, an Object reference can refer to any type object. Thus, in
pre-generics code, generalized classes, interfaces, and methods used Object references to
operate on various types of objects. The problem was that they could not do so with type safety.

Generics add the type safety that was lacking. They also streamline the process, because
it is no longer necessary to explicitly employ casts to translate between Object and the type
of data that is actually being operated upon. With generics, all casts are automatic and implicit.
Thus, generics expand your ability to reuse code and let you do so safely and easily.

NoOTE A Warning to C++ Programmers: Although generics are similar to templates in C++, they
are not the same. There are some fundamental differences between the two approaches to generic
types. If you have a background in C++, it is important not to jump to conclusions about how
generics work in Java.

A Simple Generics Example

Let’s begin with a simple example of a generic class. The following program defines two
classes. The first is the generic class Gen, and the second is GenDemo, which uses Gen.

// A simple generic class.
// Here, T is a type parameter that
// will be replaced by a real type
// when an object of type Gen is created.
class Gen<T> {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen (T o)

ob = o;

}

// Return ob.
T getob () {
return ob;

}

// Show type of T.
void showType () {
System.out .println("Type of T is " +
ob.getClass () .getName ()) ;

Chapter 14:

// Demonstrate the generic class.
class GenDemo ({
public static void main(String argsl[]) ({

}
}

// Create a Gen reference for Integers.
Gen<Integer> iOb;

// Create a Gen<Integer> object and assign its

// reference to iOb. Notice the use of autoboxing

// to encapsulate the value 88 within an Integer object.
i0b = new Gen<Integer>(88) ;

// Show the type of data used by iOb.
10b.showType () ;

// Get the value in i0Ob. Notice that
// no cast is needed.

int v = iOb.getob() ;
System.out.println("value: " + Vv);

System.out .println() ;

// Create a Gen object for Strings.
Gen<String> strOb = new Gen<Strings ("Generics Test") ;

// Show the type of data used by strOb.
strOb.showType () ;

// Get the value of strOb. Again, notice
// that no cast is needed.

String str = strOb.getob() ;
System.out.println("value: " + str);

The output produced by the program is shown here:

Let’

Type of T is java.lang.Integer
value: 88

Type of T is java.lang.String
value: Generics Test

s examine this program carefully.
First, notice how Gen is declared by the following line:

class Gen<T> {

Generics

Here, T is the name of a type parameter. This name is used as a placeholder for the actual
type that will be passed to Gen when an object is created. Thus, T is used within Gen whenever
the type parameter is needed. Notice that T is contained within < >. This syntax can be
generalized. Whenever a type parameter is being declared, it is specified within angle
brackets. Because Gen uses a type parameter, Gen is a generic class, which is also called a
parameterized type.

317

318

Part I: The Java Language

Next, T is used to declare an object called ob, as shown here:
T ob; // declare an object of type T

As explained, T is a placeholder for the actual type that will be specified when a Gen object
is created. Thus, ob will be an object of the type passed to T. For example, if type String is
passed to T, then in that instance, ob will be of type String.

Now consider Gen’s constructor:

Gen (T o) {
ob = o;

}

Notice that its parameter, o, is of type T. This means that the actual type of o is determined
by the type passed to T when a Gen object is created. Also, because both the parameter o
and the member variable ob are of type T, they will both be of the same actual type when a
Gen object is created.

The type parameter T can also be used to specify the return type of a method, as is the
case with the getob() method, shown here:

T getob () {
return ob;

}

Because ob is also of type T, its type is compatible with the return type specified by getob().

The showType() method displays the type of T by calling getName() on the Class object
returned by the call to getClass() on ob. The getClass() method is defined by Object and is
thus a member of all class types. It returns a Class object that corresponds to the type of the
class of the object on which it is called. Class defines the getName() method, which returns
a string representation of the class name.

The GenDemo class demonstrates the generic Gen class. It first creates a version of Gen
for integers, as shown here:

Gen<Integer> iOb;

Look closely at this declaration. First, notice that the type Integer is specified within the
angle brackets after Gen. In this case, Integer is a type argument that is passed to Gen’s type
parameter, T. This effectively creates a version of Gen in which all references to T are translated
into references to Integer. Thus, for this declaration, ob is of type Integer, and the return type
of getob() is of type Integer.

Before moving on, it’s necessary to state that the Java compiler does not actually create
different versions of Gen, or of any other generic class. Although it’s helpful to think in
these terms, it is not what actually happens. Instead, the compiler removes all generic type
information, substituting the necessary casts, to make your code behave as if a specific version
of Gen were created. Thus, there is really only one version of Gen that actually exists in your
program. The process of removing generic type information is called erasure, and we will
return to this topic later in this chapter.

Chapter 14: Generics

The next line assigns to iOb a reference to an instance of an Integer version of the Gen
class:

i0Ob = new Gen<Integer>(88) ;

Notice that when the Gen constructor is called, the type argument Integer is also specified.
This is necessary because the type of the object (in this case iOb) to which the reference is
being assigned is of type Gen<Integer>. Thus, the reference returned by new must also be
of type Gen<Integer>. If it isn’t, a compile-time error will result. For example, the following
assignment will cause a compile-time error:

i0Ob = new Gen<Double>(88.0); // Error!

Because iOb is of type Gen<Integer>, it can’t be used to refer to an object of Gen<Double>.
This type checking is one of the main benefits of generics because it ensures type safety.
As the comments in the program state, the assignment

i0b = new Gen<Integers>(88) ;

makes use of autoboxing to encapsulate the value 88, which is an int, into an Integer. This
works because Gen<Integer> creates a constructor that takes an Integer argument. Because
an Integer is expected, Java will automatically box 88 inside one. Of course, the assignment
could also have been written explicitly, like this:

i0Ob = new Gen<Integers>(new Integer (88)) ;

However, there would be no benefit to using this version.
The program then displays the type of ob within iOb, which is Integer. Next, the program
obtains the value of ob by use of the following line:

int v = iOb.getob() ;

Because the return type of getob() is T, which was replaced by Integer when iOb was
declared, the return type of getob() is also Integer, which unboxes into int when assigned
to v (which is an int). Thus, there is no need to cast the return type of getob() to Integer.
Of course, it’s not necessary to use the auto-unboxing feature. The preceding line could
have been written like this, too:

int v = iOb.getob () .intValue () ;

However, the auto-unboxing feature makes the code more compact.
Next, GenDemo declares an object of type Gen<String>:

Gen<String> strOb = new Gen<Strings ("Generics Test") ;

Because the type argument is String, String is substituted for T inside Gen. This creates
(conceptually) a String version of Gen, as the remaining lines in the program demonstrate.

319

320

Part I: The Java Language

Generics Work Only with Objects

When declaring an instance of a generic type, the type argument passed to the type parameter
must be a class type. You cannot use a primitive type, such as int or char. For example, with
Gen, it is possible to pass any class type to T, but you cannot pass a primitive type to a type
parameter. Therefore, the following declaration is illegal:

Gen<int> strOb = new Gen<int>(53); // Error, can't use primitive type

Of course, not being able to specify a primitive type is not a serious restriction because you
can use the type wrappers (as the preceding example did) to encapsulate a primitive type.
Further, Java’s autoboxing and auto-unboxing mechanism makes the use of the type wrapper
transparent.

Generic Types Differ Based on Their Type Arguments

A key point to understand about generic types is that a reference of one specific version of a
generic type is not type compatible with another version of the same generic type. For example,
assuming the program just shown, the following line of code is in error and will not compile:

iOb = strOb; // Wrong!

Even though both iOb and strOb are of type Gen<T>, they are references to different types
because their type parameters differ. This is part of the way that generics add type safety and
prevent errors.

How Generics Improve Type Safety

At this point, you might be asking yourself the following question: Given that the same
functionality found in the generic Gen class can be achieved without generics, by simply
specifying Object as the data type and employing the proper casts, what is the benefit of
making Gen generic? The answer is that generics automatically ensure the type safety of all
operations involving Gen. In the process, they eliminate the need for you to enter casts and
to type-check code by hand.

To understand the benefits of generics, first consider the following program that creates
a non-generic equivalent of Gen:

// NonGen is functionally equivalent to Gen
// but does not use generics.
class NonGen {

Object ob; // ob is now of type Object

// Pass the constructor a reference to
// an object of type Object
NonGen (Object o)

ob = o;

}

// Return type Object.
Object getob () {
return ob;

Chapter 14: Generics

}

// Show type of ob.
void showType () {
System.out.println("Type of ob is " +
ob.getClass () .getName ()) ;
1

}

// Demonstrate the non-generic class.
class NonGenDemo {
public static void main(String argsl[]) {
NonGen 1iOb;

// Create NonGen Object and store
// an Integer in it. Autoboxing still occurs.
i0b = new NonGen (88) ;

// Show the type of data used by iOb.
i0Ob.showType () ;

// Get the value of iOb.

// This time, a cast is necessary.
int v = (Integer) iOb.getob() ;
System.out.println("value: " + Vv);

System.out.println() ;

// Create another NonGen object and
// store a String in it.
NonGen strOb = new NonGen ("Non-Generics Test") ;

// Show the type of data used by strOb.
strOb.showType () ;

// Get the value of strOb.

// Again, notice that a cast is necessary.
String str = (String) strOb.getob () ;
System.out .println("value: " + str);

// This compiles, but is conceptually wrong!
iOb = strOb;
v = (Integer) iOb.getob(); // run-time error!

There are several things of interest in this version. First, notice that NonGen replaces all
uses of T with Object. This makes NonGen able to store any type of object, as can the generic
version. However, it also prevents the Java compiler from having any real knowledge about
the type of data actually stored in NonGen, which is bad for two reasons. First, explicit casts
must be employed to retrieve the stored data. Second, many kinds of type mismatch errors
cannot be found until run time. Let’s look closely at each problem.

321

322

Part I: The Java Language

Notice this line:
int v = (Integer) iOb.getob() ;

Because the return type of getob() is Object, the cast to Integer is necessary to enable that
value to be auto-unboxed and stored in v. If you remove the cast, the program will not compile.
With the generic version, this cast was implicit. In the non-generic version, the cast must be
explicit. This is not only an inconvenience, but also a potential source of error.

Now, consider the following sequence from near the end of the program:

// This compiles, but is conceptually wrong!
i0b = strOb;
v = (Integer) iOb.getob(); // run-time error!

Here, strOb is assigned to iOb. However, strODb refers to an object that contains a string, not
an integer. This assignment is syntactically valid because all NonGen references are the same,
and any NonGen reference can refer to any other NonGen object. However, the statement is
semantically wrong, as the next line shows. Here, the return type of getob() is cast to Integer,
and then an attempt is made to assign this value to v. The trouble is that iOb now refers to
an object that stores a String, not an Integer. Unfortunately, without the use of generics, the
Java compiler has no way to know this. Instead, a run-time exception occurs when the cast
to Integer is attempted. As you know, it is extremely bad to have run-time exceptions occur
in your code!

The preceding sequence can’t occur when generics are used. If this sequence were
attempted in the generic version of the program, the compiler would catch it and report an
error, thus preventing a serious bug that results in a run-time exception. The ability to create
type-safe code in which type-mismatch errors are caught at compile time is a key advantage
of generics. Although using Object references to create “generic” code has always been
possible, that code was not type safe, and its misuse could result in run-time exceptions.
Generics prevent this from occurring. In essence, through generics, what were once
run-time errors have become compile-time errors. This is a major advantage.

A Generic Class with Two Type Parameters

You can declare more than one type parameter in a generic type. To specify two or more
type parameters, simply use a comma-separated list. For example, the following TwoGen
class is a variation of the Gen class that has two type parameters:

// A simple generic class with two type
// parameters: T and V.
class TwoGen<T, V> {

T obl;

V ob2;

// Pass the constructor a reference to
// an object of type T and an object of type V.
TwoGen (T ol, V 02) {

obl = ol;

ob2 = 02;

}

Chapter 14:

// Show types of T and V.
void showTypes()

}
!/

System.out.println("Type of T is " +
obl.getClass () .getName ()) ;

System.out.println("Type of V is " +
ob2.getClass () .getName ()) ;

getobl () {
return obl;

getob2 ()
return ob2;

Demonstrate TwoGen.

class SimpGen {
public static void main(String argsl[]) {

}
}

TwoGen<Integer, String> tgObj =
new TwoGen<Integer, String> (88, "Generics");

// Show the types.
tgObj . showTypes () ;

// Obtain and show values.
int v = tgObj.getobl () ;
System.out.println("value: " + Vv);

String str = tgObj.getob2() ;
System.out.println("value: " + str);

The output from this program is shown here:

Type of T is java.lang.Integer
Type of V is java.lang.String
value: 88

value: Generics

Notice how TwoGen is declared:

class TwoGen<T, V> {

Generics

It specifies two type parameters: T and V, separated by a comma. Because it has two type
parameters, two type arguments must be passed to TwoGen when an object is created, as
shown next:

TwoGen<Integer, String> tgObj =
new TwoGen<Integer, String> (88, "Generics");

323

324 Part I: The Java Language

In this case, Integer is substituted for T, and String is substituted for V.
Although the two type arguments differ in this example, it is possible for both types to
be the same. For example, the following line of code is valid:

TwoGen<String, String> x = new TwoGen<String, String>("A", "B");

In this case, both T and V would be of type String. Of course, if the type arguments were
always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class

The generics syntax shown in the preceding examples can be generalized. Here is the syntax
for declaring a generic class:

class class-name<type-param-list>{ / / ...
Here is the syntax for declaring a reference to a generic class:

class-name<type-arg-list> var-name =
new class-name<type-arg-list>(cons-arg-list);

Bounded Types

In the preceding examples, the type parameters could be replaced by any class type. This is
fine for many purposes, but sometimes it is useful to limit the types that can be passed to a

type parameter. For example, assume that you want to create a generic class that contains a
method that returns the average of an array of numbers. Furthermore, you want to use the

class to obtain the average of an array of any type of number, including integers, floats, and
doubles. Thus, you want to specify the type of the numbers generically, using a type parameter.
To create such a class, you might try something like this:

// Stats attempts (unsuccessfully) to
// create a generic class that can compute
// the average of an array of numbers of
// any given type.
//
// The class contains an error!
class Stats<T> {
T[] nums; // nums is an array of type T

// Pass the constructor a reference to
// an array of type T.
Stats (T[] o) {

nums = o;

}

// Return type double in all cases.
double average () {
double sum = 0.0;

Chapter 14: Generics

for(int i=0; 1 < nums.length; i++)
sum += nums [i] .doubleValue(); // Error!!!

return sum / nums.length;

}
}

In Stats, the average() method attempts to obtain the double version of each number in
the nums array by calling doubleValue(). Because all numeric classes, such as Integer and
Double, are subclasses of Number, and Number defines the doubleValue() method, this
method is available to all numeric wrapper classes. The trouble is that the compiler has no
way to know that you are intending to create Stats objects using only numeric types. Thus,
when you try to compile Stats, an error is reported that indicates that the doubleValue()
method is unknown. To solve this problem, you need some way to tell the compiler that
you intend to pass only numeric types to T. Furthermore, you need some way to ensure that
only numeric types are actually passed.

To handle such situations, Java provides bounded types. When specifying a type parameter,
you can create an upper bound that declares the superclass from which all type arguments
must be derived. This is accomplished through the use of an extends clause when specifying
the type parameter, as shown here:

<T extends superclass>

This specifies that T can only be replaced by superclass, or subclasses of superclass. Thus,
superclass defines an inclusive, upper limit.

You can use an upper bound to fix the Stats class shown earlier by specifying Number
as an upper bound, as shown here:

// In this version of Stats, the type argument for
// T must be either Number, or a class derived
// from Number.
class Stats<T extends Numbers> {
T[] nums; // array of Number or subclass

// Pass the constructor a reference to
// an array of type Number or subclass.
Stats (T[] o) {

nums = oO;
1

// Return type double in all cases.
double average () {
double sum = 0.0;

for(int i=0; 1 < nums.length; i++)
sum += nums[i] .doubleValue () ;

return sum / nums.length;
1
}

325

326

Part I: The Java Language

// Demonstrate Stats.
class BoundsDemo {
public static void main(String argsl[]) ({

Integer inums[] = { 1, 2, 3, 4, 5 };
Stats<Integer> iob = new Stats<Integers (inums) ;
double v = iob.average() ;
System.out.println("iob average is " + V) ;

Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Double> dob = new Stats<Doubles> (dnums) ;
double w = dob.average() ;
System.out.println("dob average is " + w);

// This won't compile because String is not a
// subclass of Number.

// Strlng Strs[] = { "1", "2"1 n3||’ ||4||’ ngn }’.
// Stats<String> strob = new Stats<Strings(strs);
// double x = strob.average () ;

// System.out.println("strob average is " + V) ;

}
}

The output is shown here:

Average 1is 3.0
Average is 3.3

Notice how Stats is now declared by this line:
class Stats<T extends Numbers> {

Because the type T is now bounded by Number, the Java compiler knows that all objects of
type T can call doubleValue() because it is a method declared by Number. This is, by itself,
a major advantage. However, as an added bonus, the bounding of T also prevents nonnumeric
Stats objects from being created. For example, if you try removing the comments from the
lines at the end of the program, and then try recompiling, you will receive compile-time
errors because String is not a subclass of Number.

In addition to using a class type as a bound, you can also use an interface type. In fact,
you can specify multiple interfaces as bounds. Furthermore, a bound can include both a
class type and one or more interfaces. In this case, the class type must be specified first.
When a bound includes an interface type, only type arguments that implement that
interface are legal. When specifying a bound that has a class and an interface, or multiple
interfaces, use the & operator to connect them. For example,

class Gen<T extends MyClass & MyInterface> { //

Chapter 14: Generics 321

Here, T is bounded by a class called MyClass and an interface called MyInterface. Thus,
any type argument passed to T must be a subclass of MyClass and implement MyInterface.

Using Wildcard Arguments

As useful as type safety is, sometimes it can get in the way of perfectly acceptable constructs.
For example, given the Stats class shown at the end of the preceding section, assume that
you want to add a method called sameAvg() that determines if two Stats objects contain
arrays that yield the same average, no matter what type of numeric data each object holds.
For example, if one object contains the double values 1.0, 2.0, and 3.0, and the other object
contains the integer values 2, 1, and 3, then the averages will be the same. One way to
implement sameAvg() is to pass it a Stats argument, and then compare the average of that
argument against the invoking object, returning true only if the averages are the same. For
example, you want to be able to call sameAvg(), as shown here:

Integer inums[] = { 1, 2, 3,
Double dnums([] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

Stats<Integer> iob = new Stats<Integers (inums) ;
Stats<Double> dob = new Stats<Double> (dnums) ;

if (iob.sameAvg (dob))

System.out.println ("Averages are the same.");
else

System.out.println ("Averages differ.");

At first, creating sameAvg() seems like an easy problem. Because Stats is generic and its
average() method can work on any type of Stats object, it seems that creating sameAvg()
would be straightforward. Unfortunately, trouble starts as soon as you try to declare a
parameter of type Stats. Because Stats is a parameterized type, what do you specify for
Stats’ type parameter when you declare a parameter of that type?

At first, you might think of a solution like this, in which T is used as the type parameter:

// This won't work!
// Determine if two averages are the same.
boolean sameAvg(Stats<T> ob) {
if (average () == ob.average())
return true;

return false;

}

The trouble with this attempt is that it will work only with other Stats objects whose type is
the same as the invoking object. For example, if the invoking object is of type Stats<Integer>,
then the parameter ob must also be of type Stats<Integer>. It can’t be used to compare the
average of an object of type Stats<Double> with the average of an object of type Stats<Short>,
for example. Therefore, this approach won’t work except in a very narrow context and does
not yield a general (that is, generic) solution.

328 Part I: The Java Language

To create a generic sameAvg() method, you must use another feature of Java generics:
the wildcard argument. The wildcard argument is specified by the ?, and it represents an
unknown type. Using a wildcard, here is one way to write the sameAvg() method:

// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob) {
if (average () == ob.average())
return true;

return false;

}

Here, Stats<?> matches any Stats object, allowing any two Stats objects to have their
averages compared. The following program demonstrates this:

// Use a wildcard.
class Stats<T extends Numbers> {
T[] nums; // array of Number or subclass

// Pass the constructor a reference to
// an array of type Number or subclass.
Stats (T[] o) {

nums = oO;

}

// Return type double in all cases.
double average () {
double sum = 0.0;

for(int i=0; 1 < nums.length; i++)
sum += nums [i] .doubleValue () ;

return sum / nums.length;

}

// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob) {
if (average () == ob.average())
return true;

return false;

}
}

// Demonstrate wildcard.
class WildcardDemo {
public static void main(String argsl[]) ({
Integer inums[] = { 1, 2, 3, 4, 5 };
Stats<Integer> iob = new Stats<Integers (inums) ;
double v = iob.average() ;
System.out.println("iob average is " + Vv);

}
}

Chapter 14: Generics

Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Double> dob = new Stats<Double> (dnums) ;
double w = dob.average() ;
System.out.println("dob average is " + w);

Float fnums[] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F };
Stats<Float> fob = new Stats<Float> (fnums) ;
double x = fob.average() ;

System.out.println("fob average is " + Xx);

// See which arrays have same average.
System.out .print ("Averages of iob and dob ") ;
if (iob.sameAvg (dob))

System.out.println("are the same.");
else

System.out.println("differ.");

System.out .print ("Averages of iob and fob ");
if (iob.sameAvg (fob))

System.out.println("are the same.");
else

System.out.println("differ.");

The output is shown here:

iob average is 3.0

dob average is 3.3

fob average is 3.0

Averages of iob and dob differ.
Averages of iob and fob are the same.

One last point: It is important to understand that the wildcard does not affect what type

of Stats objects can be created. This is governed by the extends clause in the Stats declaration.
The wildcard simply matches any valid Stats object.

Bounded Wildcards

Wildcard arguments can be bounded in much the same way that a type parameter can be
bounded. A bounded wildcard is especially important when you are creating a generic type
that will operate on a class hierarchy. To understand why, let’s work through an example.
Consider the following hierarchy of classes that encapsulate coordinates:

//

Two-dimensional coordinates.

class TwoD
int x, vy;

TwoD (int a, int b) {

}
}

X = aj;
y = b;

329

330

Part I: The Java Language

// Three-dimensional coordinates.
class ThreeD extends TwoD {
int z;

ThreeD (int a, int b, int c¢) {
super (a, b);
z = C;
1
}

// Four-dimensional coordinates.
class FourD extends ThreeD {
int t;

FourD(int a, int b, int ¢, int d) {
super(a, b, c);
t = d;
1
}

At the top of the hierarchy is TwoD, which encapsulates a two-dimensional, XY coordinate.
TwoD is inherited by ThreeD, which adds a third dimension, creating an XYZ coordinate.
ThreeD is inherited by FourD, which adds a fourth dimension (time), yielding a
four-dimensional coordinate.

Shown next is a generic class called Coords, which stores an array of coordinates:

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
T[] coords;

Coords (T[] o) { coords = o; }

}

Notice that Coords specifies a type parameter bounded by TwoD. This means that any
array stored in a Coords object will contain objects of type TwoD or one of its subclasses.
Now, assume that you want to write a method that displays the X and Y coordinates
for each element in the coords array of a Coords object. Because all types of Coords objects
have at least two coordinates (X and Y), this is easy to do using a wildcard, as shown here:

static void showXY (Coords<?> c) {
System.out .println ("X Y Coordinates:");
for(int i=0; i < c.coords.length; i++)
System.out.println(c.coords([i].x + " " +
c.coords [i] .vy) ;
System.out.println() ;

}

Because Coords is a bounded generic type that specifies TwoD as an upper bound, all
objects that can be used to create a Coords object will be arrays of type TwoD, or of classes
derived from TwoD. Thus, showXY() can display the contents of any Coords object.

Chapter 14: Generics

However, what if you want to create a method that displays the X, Y, and Z coordinates
of a ThreeD or FourD object? The trouble is that not all Coords objects will have three
coordinates, because a Coords<TwoD> object will only have X and Y. Therefore, how do
you write a method that displays the X, Y, and Z coordinates for Coords<ThreeD> and
Coords<FourD> objects, while preventing that method from being used with Coords<TwoD>
objects? The answer is the bounded wildcard argument.

A bounded wildcard specifies either an upper bound or a lower bound for the type
argument. This enables you to restrict the types of objects upon which a method will operate.
The most common bounded wildcard is the upper bound, which is created using an extends
clause in much the same way it is used to create a bounded type.

Using a bounded wildcard, it is easy to create a method that displays the X, Y, and Z
coordinates of a Coords object, if that object actually has those three coordinates. For example,
the following showXYZ() method shows the X, Y, and Z coordinates of the elements stored
in a Coords object, if those elements are actually of type ThreeD (or are derived from ThreeD):

static void showXYZ (Coords<? extends ThreeD> c) {
System.out.println ("X Y Z Coordinates:");
for(int i=0; i < c.coords.length; i++)
System.out.println(c.coords[i] .x + "™ " +
c.coords[i]l .y + " " +
c.coords [i] .z) ;
System.out.println() ;

}

Notice that an extends clause has been added to the wildcard in the declaration of
parameter c. It states that the ? can match any type as long as it is ThreeD, or a class
derived from ThreeD. Thus, the extends clause establishes an upper bound that the ? can
match. Because of this bound, showXYZ() can be called with references to objects of type
Coords<ThreeD> or Coords<FourD>, but not with a reference of type Coords<TwoD>.
Attempting to call showXZY() with a Coords<TwoD> reference results in a compile-time
error, thus ensuring type safety.

Here is an entire program that demonstrates the actions of a bounded wildcard argument:

// Bounded Wildcard arguments.

// Two-dimensional coordinates.
class TwoD
int x, vy;

TwoD (int a, int b) {
X = a;
y = b;
1
}

// Three-dimensional coordinates.
class ThreeD extends TwoD {
int z;

ThreeD (int a, int b, int c) {

331

332

Part I:

super (a, b);
z = C;
1
}

The Java Language

// Four-dimensional coordinates.
class FourD extends ThreeD

int t;

FourD (int a,
super (a, b,
t = d;
1
}

int b,
c)i

int c,

int d) {

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {

T[] coords;

Coords (T[] o)

}

{ coords

- 0;)

// Demonstrate a bounded wildcard.

class BoundedWildcard {

static void showXY (Coords<?> c) {

System.out.println ("X Y Coordinates:");
i < c.coords.length;

for (int 1=0;

i++4)

System.out.println(c.coords[i] .x + "

System.out .println() ;

}

static void showXYZ (Coords<? extends ThreeD> c)
System.out .println ("X Y Z Coordinates:");
i < c.coords.length;

for (int 1i=0;

c.coords [i] .y) ;

1++)

System.out.println(c.coords[i] .x + "

System.out .println() ;

}

static void showAll (Coords<? extends FourD> c)
System.out.println("X Y Z T Coordinates:");
i < c.coords.length;

for (int i=0;

c.coords[i] .y + "
c.coords [i].z);

i++)

System.out.println(c.coords[i] .x + "

System.out .println() ;

}

c.coords [i] .y + "
c.coords[i].z + "
c.coords [i] .t) ;

public static void main(String argsl[]) {

TwoD td[] =

{

n

n

n

"

n

n

+

+
+

+
+
+

{

{

new TwoD (0, 0),
new TwoD (7, 9),
new TwoD (18, 4),
new TwoD (-1, -23)

Coords<TwoD> tdlocs = new Coords<TwoD> (td) ;

System.out.println("Contents of tdlocs.");
showXY (tdlocs); // OK, is a TwoD

// showXYZ(tdlocs); // Error, not a ThreeD

// showAll (tdlocs); // Error, not a FourD

// Now, create some FourD objects.
FourD £d[] {

new FourD(1l, 2, 3, 4),
new FourD(6, 8, 14, 8),
new FourD (22, 9, 4, 9),
new FourD(3, -2, -23, 17)

Vi
Coords<FourD> fdlocs = new Coords<FourDs> (fd) ;

System.out.println ("Contents of fdlocs.");
// These are all OK.

showXY (fdlocs) ;

showXYZ (fdlocs) ;

showAll (fdlocs) ;

}
}

The output from the program is shown here:

Contents of tdlocs.
X Y Coordinates:
00

7 9

18 4

-1 -23

Contents of fdlocs.
X Y Coordinates:
12

6 8

22 9

3 -2

X Y Z Coordinates:
12 3

6 8 14

22 9 4

3 -2 -23

Chapter 14: Generics

333

334 Part I: The Java Language

X Y Z T Coordinates:
12 3 4

6 8 14 8

22 9 4 9

3 -2 -23 17

Notice these commented-out lines:

// showXYZ(tdlocs); // Error, not a ThreeD
// showAll (tdlocs); // Error, not a FourD

Because tdlocs is a Coords(TwoD) object, it cannot be used to call showXYZ() or
showAll() because bounded wildcard arguments in their declarations prevent it. To prove
this to yourself, try removing the comment symbols, and then attempt to compile the
program. You will receive compilation errors because of the type mismatches.

In general, to establish an upper bound for a wildcard, use the following type of wildcard
expression:

<? extends superclass>

where superclass is the name of the class that serves as the upper bound. Remember, this is an
inclusive clause because the class forming the upper bound (that is, specified by superclass) is
also within bounds.

You can also specify a lower bound for a wildcard by adding a super clause to a wildcard
declaration. Here is its general form:

<? super subclass>

In this case, only classes that are superclasses of subclass are acceptable arguments. This is an
exclusive clause, because it will not match the class specified by subclass.

Creating a Generic Method

As the preceding examples have shown, methods inside a generic class can make use of a
class’ type parameter and are, therefore, automatically generic relative to the type parameter.
However, it is possible to declare a generic method that uses one or more type parameters
of its own. Furthermore, it is possible to create a generic method that is enclosed within a
non-generic class.

Let’s begin with an example. The following program declares a non-generic class called
GenMethDemo and a static generic method within that class called isIn(). The isIn() method
determines if an object is a member of an array. It can be used with any type of object and
array as long as the array contains objects that are compatible with the type of the object
being sought.

// Demonstrate a simple generic method.
class GenMethDemo {

// Determine if an object is in an array.
static <T, V extends T> boolean isIn(T x, VI[] y) {

for(int i=0; 1 <
(vl

y.length; i++)
if (x.equals(y[i]))

return true;

return false;

}

public static void main(String argsl[]) ({

// Use isIn() on Integers.
Integer nums[] = { 1, 2, 3, 4, 5 };

if (isIn(2, nums))
System.out.println("2 is in nums") ;

if(!isIn(7, nums))
System.out.println("7 is not in nums");

System.out.println() ;

// Use isIn(
String strs|[

on Strings.
- { "one", "two", "three" ,
"four", "five" };

)

]

if (isIn("two", strs))
System.out.println("two is in strs");

if (!isIn("seven", strs))
System.out.println("seven is not in strs");

Chapter 14: Generics

// Oops! Won't compile! Types must be compatible.

// if (isIn("two", nums))
// System.out.println("two is in strs");

}
}

The output from the program is shown here:

2 is in nums
7 is not in nums

two is in strs
seven is not in strs

Let’s examine isIn() closely. First, notice how it is declared

static <T, V extends T> boolean isIn(T x, VI[] vy) {

by this line:

The type parameters are declared before the return type of the method. Second, notice that
the type V is upper-bounded by T. Thus, V must either be the same as type T, or a subclass

of T. This relationship enforces that isIn() can be called only with
with each other. Also notice that isIn() is static, enabling it to be
object. Understand, though, that generic methods can be either
no restriction in this regard.

arguments that are compatible
called independently of any
static or non-static. There is

335

336

Part I: The Java Language

Now, notice how isIn() is called within main() by use of the normal call syntax, without
the need to specify type arguments. This is because the types of the arguments are automatically
discerned, and the types of T and V are adjusted accordingly. For example, in the first call:

if (isIn(2, nums))

the type of the first argument is Integer (due to autoboxing), which causes Integer to be
substituted for T. The base type of the second argument is also Integer, which makes Integer
a substitute for V, too.
In the second call, String types are used, and the types of T and V are replaced by String.
Now, notice the commented-out code, shown here:

// if (isIn("two", nums))
// System.out .println("two is in strs");

If you remove the comments and then try to compile the program, you will receive an error. The
reason is that the type parameter V is bounded by T in the extends clause in V’s declaration.
This means that V must be either type T, or a subclass of T. In this case, the first argument is of
type String, making T into String, but the second argument is of type Integer, which is not a
subclass of String. This causes a compile-time type-mismatch error. This ability to enforce type
safety is one of the most important advantages of generic methods.

The syntax used to create isIn() can be generalized. Here is the syntax for a generic method:

<type-param-list> ret-type meth-name(param-list) { // ...

In all cases, type-param-list is a comma-separated list of type parameters. Notice that for
a generic method, the type parameter list precedes the return type.

Generic Constructors

It is also possible for constructors to be generic, even if their class is not. For example, consider
the following short program:

// Use a generic constructor.
class GenCons {
private double val;

<T extends Number> GenCons (T arg) {
val = arg.doubleValue () ;

}

void showval () {
System.out.println("val: " + wval);

}
}

class GenConsDemo {
public static void main(String argsl[]) {

GenCons test = new GenCons (100) ;
GenCons test2 = new GenCons (123.5F) ;

Chapter 14: Generics 3317

test.showval () ;
test2.showval () ;

}
}

The output is shown here:

val: 100.0
val: 123.5

Because GenCons() specifies a parameter of a generic type, which must be a subclass of
Number, GenCons() can be called with any numeric type, including Integer, Float, or
Double. Therefore, even though GenCons is not a generic class, its constructor is generic.

Generic Interfaces

In addition to generic classes and methods, you can also have generic interfaces. Generic
interfaces are specified just like generic classes. Here is an example. It creates an interface
called MinMax that declares the methods min() and max(), which are expected to return
the minimum and maximum value of some set of objects.

// A generic interface example.

// A Min/Max interface.

interface MinMax<T extends Comparable<Ts>> {
T min() ;
T max () ;

}

// Now, implement MinMax
class MyClass<T extends Comparable<T>> implements MinMax<T> {
T[] vals;

MyClass (T[] o) { vals = o; }

// Return the minimum value in vals.
public T min() {
T v = vals[0];

for(int i=1; 1 < vals.length; i++)
if (vals[i] .compareTo(v) < 0) v = vals[i];

return v;

}

// Return the maximum value in vals.
public T max () {
T v = vals[0];

for(int i=1; 1 < vals.length; i++)
if (vals[i] .compareTo(v) > 0) v = vals[i];

338 Part I: The Java Language

return v;

}
}

class GenIFDemo {
public static void main(String args[]) {
Integer inums[] = {3, 6, 2, 8, 6 };
Character chs[] = {'b', 'r', 'p', 'w' };

MyClass<Integer> iob = new MyClass<Integers> (inums) ;
MyClass<Character> cob = new MyClass<Character>(chs);

System.out.println("Max value in inums: " + iob.max());
System.out.println("Min value in inums: " + iob.min());
System.out.println("Max value in chs: " + cob.max()) ;
System.out.println("Min value in chs: " + cob.min()) ;

}
}

The output is shown here:

Max value in inums: 8
Min value in inums: 2
Max value in chs: w
Min value in chs: b

Although most aspects of this program should be easy to understand, a couple of key
points need to be made. First, notice that MinMax is declared like this:

interface MinMax<T extends Comparable<Ts>> {

In general, a generic interface is declared in the same way as is a generic class. In this case,
the type parameter is T, and its upper bound is Comparable, which is an interface defined by
java.lang. A class that implements Comparable defines objects that can be ordered. Thus,
requiring an upper bound of Comparable ensures that MinMax can be used only with
objects that are capable of being compared. (See Chapter 16 for more information on
Comparable.) Notice that Comparable is also generic. (It was retrofitted for generics by
JDK 5.) It takes a type parameter that specifies the type of the objects being compared.

Next, MinMax is implemented by MyClass. Notice the declaration of MyClass,
shown here:

class MyClass<T extends Comparable<T>> implements MinMax<T> {

Pay special attention to the way that the type parameter T is declared by MyClass and
then passed to MinMax. Because MinMax requires a type that implements Comparable,
the implementing class (MyClass in this case) must specify the same bound. Furthermore,
once this bound has been established, there is no need to specify it again in the implements
clause. In fact, it would be wrong to do so. For example, this line is incorrect and won’t compile:

Chapter 14: Generics 339

// This is wrong!
class MyClass<T extends Comparable<T>>
implements MinMax<T extends Comparable<Ts>>

Once the type parameter has been established, it is simply passed to the interface without
further modification.

In general, if a class implements a generic interface, then that class must also be generic,
at least to the extent that it takes a type parameter that is passed to the interface. For example,
the following attempt to declare MyClass is in error:

class MyClass implements MinMax<T> { // Wrong!

Because MyClass does not declare a type parameter, there is no way to pass one to MinMax.
In this case, the identifier T is simply unknown, and the compiler reports an error. Of course,
if a class implements a specific type of generic interface, such as shown here:

class MyClass implements MinMax<Integer> { // OK

then the implementing class does not need to be generic.

The generic interface offers two benefits. First, it can be implemented for different types
of data. Second, it allows you to put constraints (that is, bounds) on the types of data for which
the interface can be implemented. In the MinMax example, only types that implement the
Comparable interface can be passed to T.

Here is the generalized syntax for a generic interface:

interface interface-name<type-param-list>{ / / ...

Here, type-param-list is a comma-separated list of type parameters. When a generic interface
is implemented, you must specify the type arguments, as shown here:

class class-name<type-param-list>
implements interface-name<type-arg-list> {

Raw Types and Legacy Code

Because support for generics is a recent addition to Java, it was necessary to provide some
transition path from old, pre-generics code. At the time of this writing, there are still millions
and millions of lines of pre-generics legacy code that must remain both functional and
compatible with generics. Pre-generics code must be able to work with generics, and
generic code must be able to work with pre-generic code.

To handle the transition to generics, Java allows a generic class to be used without any
type arguments. This creates a raw type for the class. This raw type is compatible with legacy
code, which has no knowledge of generics. The main drawback to using the raw type is that
the type safety of generics is lost.

Here is an example that shows a raw type in action:

// Demonstrate a raw type.
class Gen<T> {

340 Part I: The Java Language

T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen (T o) {

ob = o;

}

// Return ob.
T getob ()
return ob;
1
}

// Demonstrate raw type.
class RawDemo {
public static void main(String args[]) {

// Create a Gen object for Integers.
Gen<Integer> iOb = new Gen<Integers>(88) ;

// Create a Gen object for Strings.
Gen<String> strOb = new Gen<Strings ("Generics Test") ;

// Create a raw-type Gen object and give it
// a Double value.
Gen raw = new Gen (new Double(98.6)) ;

// Cast here is necessary because type is unknown.
double d = (Double) raw.getob() ;
System.out.println("value: " + d);

// The use of a raw type can lead to run-time
// exceptions. Here are some examples.

// The following cast causes a run-time error!
// int i = (Integer) raw.getob(); // run-time error

// This assignment overrides type safety.
strOb = raw; // OK, but potentially wrong
// String str = strOb.getob(); // run-time error

// This assignment also overrides type safety.

raw = i0Ob; // OK, but potentially wrong
// d = (Double) raw.getob(); // run-time error

This program contains several interesting things. First, a raw type of the generic Gen
class is created by the following declaration:

Gen raw = new Gen (new Double(98.6)) ;

Chapter 14: Generics

Notice that no type arguments are specified. In essence, this creates a Gen object whose
type T is replaced by Object.

Araw type is not type safe. Thus, a variable of a raw type can be assigned a reference to
any type of Gen object. The reverse is also allowed; a variable of a specific Gen type can be
assigned a reference to a raw Gen object. However, both operations are potentially unsafe
because the type checking mechanism of generics is circumvented.

This lack of type safety is illustrated by the commented-out lines at the end of the program.
Let’s examine each case. First, consider the following situation:

// int 1 = (Integer) raw.getob(); // run-time error

In this statement, the value of ob inside raw is obtained, and this value is cast to Integer.
The trouble is that raw contains a Double value, not an integer value. However, this cannot
be detected at compile time because the type of raw is unknown. Thus, this statement fails
at run time.

The next sequence assigns to a strOb (a reference of type Gen<String>) a reference to
a raw Gen object:

strOb = raw; // OK, but potentially wrong
// String str = strOb.getob(); // run-time error

The assignment, itself, is syntactically correct, but questionable. Because strOb is of type
Gen<String>, it is assumed to contain a String. However, after the assignment, the object
referred to by strOb contains a Double. Thus, at run time, when an attempt is made to assign
the contents of strOb to str, a run-time error results because strOb now contains a Double.
Thus, the assignment of a raw reference to a generic reference bypasses the type-safety
mechanism.

The following sequence inverts the preceding case:

raw = i0Ob; // OK, but potentially wrong
// d = (Double) raw.getob(); // run-time error

Here, a generic reference is assigned to a raw reference variable. Although this is syntactically
correct, it can lead to problems, as illustrated by the second line. In this case, raw now refers
to an object that contains an Integer object, but the cast assumes that it contains a Double.
This error cannot be prevented at compile time. Rather, it causes a run-time error.

Because of the potential for danger inherent in raw types, javac displays unchecked warnings
when a raw type is used in a way that might jeopardize type safety. In the preceding program,
these lines generate unchecked warnings:

Gen raw = new Gen(new Double(98.6)) ;
strOb = raw; // OK, but potentially wrong

In the first line, it is the call to the Gen constructor without a type argument that causes the
warning. In the second line, it is the assignment of a raw reference to a generic variable that
generates the warning.

341

342

Part I: The Java Language

At first, you might think that this line should also generate an unchecked warning, but
it does not:

raw = iOb; // OK, but potentially wrong

No compiler warning is issued because the assignment does not cause any further loss of
type safety than had already occurred when raw was created.

One final point: You should limit the use of raw types to those cases in which you must
mix legacy code with newer, generic code. Raw types are simply a transitional feature and
not something that should be used for new code.

Generic Class Hierarchies

Generic classes can be part of a class hierarchy in just the same way as a non-generic class.
Thus, a generic class can act as a superclass or be a subclass. The key difference between
generic and non-generic hierarchies is that in a generic hierarchy, any type arguments needed
by a generic superclass must be passed up the hierarchy by all subclasses. This is similar to
the way that constructor arguments must be passed up a hierarchy.

Using a Generic Superclass
Here is a simple example of a hierarchy that uses a generic superclass:

// A simple generic class hierarchy.
class Gen<T> {
T ob;

Gen (T o)
ob = o;

}

// Return ob.
T getob () {
return ob;
1
}

// A subclass of Gen.
class Gen2<T> extends Gen<T> {
Gen2 (T o)
super (o) ;
1
}

{

In this hierarchy, Gen2 extends the generic class Gen. Notice how Gen2 is declared by
the following line:

class Gen2<T> extends Gen<T> {

Chapter 14: Generics

The type parameter T is specified by Gen2 and is also passed to Gen in the extends clause.
This means that whatever type is passed to Gen2 will also be passed to Gen. For example,
this declaration,

Gen2<Integer> num = new Gen2<Integers>(100) ;

passes Integer as the type parameter to Gen. Thus, the ob inside the Gen portion of Gen2
will be of type Integer.

Notice also that Gen2 does not use the type parameter T except to pass it to the Gen
superclass. Thus, even if a subclass of a generic superclass would otherwise not need to
be generic, it still must specify the type parameter(s) required by its generic superclass.

Of course, a subclass is free to add its own type parameters, if needed. For example, here
is a variation on the preceding hierarchy in which Gen2 adds a type parameter of its own:

// A subclass can add its own type parameters.
class Gen<T> {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen (T o)
ob = o;
1

// Return ob.
T getob () {

return ob;
1

}

// A subclass of Gen that defines a second
// type parameter, called V.
class Gen2<T, V> extends Gen<T> {

V ob2;

Gen2 (T o, V o2) {
super (o) ;
ob2 = 02;

}

V getob2 () {
return ob2;
1

}

// Create an object of type Gen2.
class HierDemo {
public static void main(String argsl[]) {

343

344 Part I: The Java Language

// Create a Gen2 object for String and Integer.
Gen2<String, Integer> x =
new Gen2<String, Integers("Value is: ", 99);

System.out.print (x.getob()) ;
System.out.println(x.getob2()) ;
}
}

Notice the declaration of this version of Gen2, which is shown here:

class Gen2<T, V> extends Gen<T> {

Here, T is the type passed to Gen, and V is the type that is specific to Gen2. V is used to
declare an object called ob2, and as a return type for the method getob2(). In main(), a
Gen2 object is created in which type parameter T is String, and type parameter V is Integer.
The program displays the following, expected, result:

Value is: 99

A Generic Subclass

It is perfectly acceptable for a non-generic class to be the superclass of a generic subclass.
For example, consider this program:

// A non-generic class can be the superclass
// of a generic subclass.

// A non-generic class.
class NonGen {
int num;

NonGen (int i)
num = 1i;
1

int getnum()
return num;

}

// A generic subclass.
class Gen<T> extends NonGen {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen(T o, int i) {

super (1) ;

ob = o;

}

Chapter 14: Generics

// Return ob.
T getob ()
return ob;

}
}

// Create a Gen object.
class HierDemo2 ({
public static void main(String args[]) {

// Create a Gen object for String.
Gen<String> w = new Gen<Strings("Hello", 47);

System.out.print (w.getob () + " ");
System.out.println(w.getnum()) ;

}
}

The output from the program is shown here:

Hello 47

In the program, notice how Gen inherits NonGen in the following declaration:
class Gen<T> extends NonGen {

Because NonGen is not generic, no type argument is specified. Thus, even though Gen
declares the type parameter T, it is not needed by (nor can it be used by) NonGen. Thus,
NonGen is inherited by Gen in the normal way. No special conditions apply.

Run-Time Type Comparisons Within a Generic Hierarchy

Recall the run-time type information operator instanceof that was described in Chapter 13.
As explained, instanceof determines if an object is an instance of a class. It returns true if
an object is of the specified type or can be cast to the specified type. The instanceof operator
can be applied to objects of generic classes. The following class demonstrates some of the
type compatibility implications of a generic hierarchy:

// Use the instanceof operator with a generic class hierarchy.
class Gen<T> {
T ob;

Gen (T o)
ob = o;

}

// Return ob.
T getob () {
return ob;
1
}

{

345

346

Part I: The Java Language

// A subclass of Gen.
class Gen2<T> extends Gen<T> {
Gen2 (T o)
super (o) ;
}

}

// Demonstrate run-time type ID implications of generic
// class hierarchy.
class HierDemo3

public static void main(String args[]) {

// Create a Gen object for Integers.
Gen<Integer> i0Ob = new Gen<Integers>(88) ;

// Create a Gen2 object for Integers.
Gen2<Integer> i0b2 = new Gen2<Integer>(99) ;

// Create a Gen2 object for Strings.
Gen2<String> strOb2 = new Gen2<String> ("Generics Test");

// See if i0b2 is some form of Gen2.
if (10b2 instanceof Gen2<?>)
System.out.println("iOb2 is instance of Gen2");

// See if i0b2 is some form of Gen.
if (iOb2 instanceof Gen<?>)
System.out.println("iOb2 is instance of Gen");

System.out.println() ;

// See if strOb2 is a Gen2.
if (strOb2 instanceof Gen2<?>)
System.out.println("strOb2 is instance of Gen2");

// See if strOb2 is a Gen.
if (strOb2 instanceof Gen<?>)
System.out.println("strOb2 is instance of Gen");

System.out.println() ;

// See if i0Ob is an instance of Gen2, which it is not.
if (i0Ob instanceof Gen2<?>)
System.out.println("iOb is instance of Gen2");

// See if i0Ob is an instance of Gen, which it is.
if (i0Ob instanceof Gen<?>)
System.out.println("iOb is instance of Gen");

// The following can't be compiled because

// generic type info does not exist at run time.
// if (10b2 instanceof Gen2<Integers)
// System.out.println("iOb2 is instance of Gen2<Integer>");

}
}

Chapter 14: Generics

The output from the program is shown here:

i0b2 is instance of Gen2
i0b2 is instance of Gen

strOb2 is instance of Gen2
strOb2 is instance of Gen

i0b is instance of Gen

In this program, Gen2 is a subclass of Gen, which is generic on type parameter T. In
main(), three objects are created. The first is iOb, which is an object of type Gen<Integer>.
The second is iOb2, which is an instance of Gen2<Integer>. Finally, strOb2 is an object of
type Gen2<String>.

Then, the program performs these instanceof tests on the type of iOb2:

// See if i0Ob2 is some form of Gen2.
1f (10b2 instanceof Gen2<?>)
System.out.println("iOb2 is instance of Gen2");

// See if i0Ob2 is some form of Gen.
if (iOb2 instanceof Gen<?>)
System.out.println("iOb2 is instance of Gen");

As the output shows, both succeed. In the first test, iOb2 is checked against Gen2<?>. This
test succeeds because it simply confirms that iOb2 is an object of some type of Gen2 object.
The use of the wildcard enables instanceof to determine if iOb2 is an object of any type of
Gen2. Next, iOb2 is tested against Gen<?>, the superclass type. This is also true because
iOb2 is some form of Gen, the superclass. The next few lines in main() show the same
sequence (and same results) for strOb2.

Next, iOb, which is an instance of Gen<Integer> (the superclass), is tested by these lines:

// See if i0Ob is an instance of Gen2, which it is not.
if (iOb instanceof Gen2<?>)
System.out.println("iOb is instance of Gen2");

// See if i0Ob is an instance of Gen, which it is.
if (i0Ob instanceof Gen<?>)
System.out.println("iOb is instance of Gen") ;

The first if fails because iOb is not some type of Gen2 object. The second test succeeds because
iOb is some type of Gen object.
Now, look closely at these commented-out lines:

// The following can't be compiled because
// generic type info does not exist at run time.
// if (10b2 instanceof Gen2<Integers)
// System.out.println("iOb2 is instance of Gen2<Integers>");

As the comments indicate, these lines can’t be compiled because they attempt to compare
iOb2 with a specific type of Gen2, in this case, Gen2<Integer>. Remember, there is no generic

341

348 Part I: The Java Language

type information available at run time. Therefore, there is no way for instanceof to know if
iOb2 is an instance of Gen2<Integer> or not.

Casting

You can cast one instance of a generic class into another only if the two are otherwise
compatible and their type arguments are the same. For example, assuming the foregoing
program, this cast is legal:

(Gen<Integers>) i0b2 // legal
because iOb2 is an instance of Gen<Integer>. But, this cast:
(Gen<Long>) 10b2 // illegal

is not legal because iOb2 is not an instance of Gen<Long>.

Overriding Methods in a Generic Class

A method in a generic class can be overridden just like any other method. For example,
consider this program in which the method getob() is overridden:

// Overriding a generic method in a generic class.
class Gen<T> {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen (T o)

ob = o;

}

// Return ob.
T getob () {
System.out.print ("Gen's getob(): ");
return ob;
}
}

// A subclass of Gen that overrides getob() .
class Gen2<T> extends Gen<T> {

Gen2 (T o)
super (o) ;

}

// Override getob () .
T getob ()
System.out .print ("Gen2's getob(): ");
return ob;
}
}

Chapter 14: Generics

// Demonstrate generic method override.
class OverrideDemo {
public static void main(String argsl[]) ({

// Create a Gen object for Integers.
Gen<Integer> iOb = new Gen<Integers>(88) ;

// Create a Gen2 object for Integers.
Gen2<Integer> 10b2 = new Gen2<Integer>(99);

// Create a Gen2 object for Strings.
Gen2<String> strOb2 = new Gen2<String> ("Generics Test");

System.out.println (iOb.getob ()) ;
System.out .println (iOb2.getob()) ;
System.out.println (strOb2.getob()) ;

}
}

The output is shown here:

Gen's getob () : 88
Gen2's getob(): 99
Gen2's getob(): Generics Test

As the output confirms, the overridden version of getob() is called for objects of type Gen2,
but the superclass version is called for objects of type Gen.

Erasure

Usually, it is not necessary to know the details about how the Java compiler transforms
your source code into object code. However, in the case of generics, some general
understanding of the process is important because it explains why the generic features work
as they do—and why their behavior is sometimes a bit surprising. For this reason, a brief
discussion of how generics are implemented in Java is in order.

An important constraint that governed the way that generics were added to Java was
the need for compatibility with previous versions of Java. Simply put, generic code had to
be compatible with preexisting, non-generic code. Thus, any changes to the syntax of the
Java language, or to the JVM, had to avoid breaking older code. The way Java implements
generics while satisfying this constraint is through the use of erasure.

In general, here is how erasure works. When your Java code is compiled, all generic type
information is removed (erased). This means replacing type parameters with their bound
type, which is Object if no explicit bound is specified, and then applying the appropriate
casts (as determined by the type arguments) to maintain type compatibility with the types
specified by the type arguments. The compiler also enforces this type compatibility. This
approach to generics means that no type parameters exist at run time. They are simply a
source-code mechanism.

349

Part I: The Java Language

To better understand how erasure works, consider the following two classes:

// Here, T is bound by Object by default.
class Gen<T> {
T ob; // here, T will be replaced by Object

{

Gen (T o)
ob = o;
1

// Return ob.
T getob () {

return ob;
1

}

// Here, T is bound by String.
class GenStr<T extends String> {
T str; // here, T will be replaced by String

GenStr (T o) {
str = o;
}

T getstr() { return str; }

}

After these two classes are compiled, the T in Gen will be replaced by Object. The T in
GenStr will be replaced by String. You can confirm this by running javap on their compiled
classes. The results are shown here:

class Gen extends java.lang.Object({
java.lang.Object ob;
Gen (java.lang.Object) ;
java.lang.Object getob() ;

}

class GenStr extends java.lang.Object({
java.lang.String str;
GenStr (java.lang.String) ;
java.lang.String getstr () ;

}

Within the code for Gen and GenStr, casts are employed to ensure proper typing. For
example, this sequence:

Gen<Integer> iOb = new Gen<Integer>(99);
int x = iOb.getob() ;

would be compiled as if it were written like this:

Chapter 14: Generics

Gen 10b = new Gen(99) ;
int x = (Integer) iOb.getob() ;

Because of erasure, some things work a bit differently than you might think. For example,
consider this short program that creates two objects of the generic Gen class just shown:

class GenTypeDemo {
public static void main(String argsl[]) {
Gen<Integer> i0b = new Gen<Integer>(99);
Gen<Float> fOb = new Gen<Float>(102.2F);

System.out.println (iOb.getClass () .getName ()) ;
System.out .println (fOb.getClass () .getName ()) ;

}
}

The output from this program is shown here:

Gen
Gen

As you can see, the types of both iOb and fOb are Gen, not the Gen<Integer> and
Gen<Float> that you might have expected. Remember, all type parameters are erased
during compilation. At run time, only raw types actually exist.

Bridge Methods

Occasionally, the compiler will need to add a bridge method to a class to handle situations in
which the type erasure of an overriding method in a subclass does not produce the same
erasure as the method in the superclass. In this case, a method is generated that uses the
type erasure of the superclass, and this method calls the method that has the type erasure
specified by the subclass. Of course, bridge methods only occur at the bytecode level, are
not seen by you, and are not available for your use.

Although bridge methods are not something that you will normally need to be concerned
with, it is still instructive to see a situation in which one is generated. Consider the following
program:

// A situation that creates a bridge method.
class Gen<T> {
T ob; // declare an object of type T

// Pass the constructor a reference to
// an object of type T.
Gen (T o)
ob = o;
1

// Return ob.
T getob ()

return ob;
1

351

352

Part I: The Java Language

}

// A subclass of Gen.
class Gen2 extends Gen<String> {

Gen2 (String o) {
super (o) ;

// A String-specific override of getob().

String getob () {
System.out.print ("You called String getob(): ");
return ob;

}
}

// Demonstrate a situation that requires a bridge method.
class BridgeDemo {
public static void main(String argsl[]) {

// Create a Gen2 object for Strings.
Gen2 strOb2 = new Gen2 ("Generics Test") ;

System.out .println (strOb2.getob()) ;

}
}

In the program, the subclass Gen2 extends Gen, but does so using a String-specific version
of Gen, as its declaration shows:

class Gen2 extends Gen<String> {
Furthermore, inside Gen2, getob() is overridden with String specified as the return type:

// A String-specific override of getob() .

String getob() {
System.out.print ("You called String getob(): ");
return ob;

}

All of this is perfectly acceptable. The only trouble is that because of type erasure, the
expected form of getob() will be

Object getob() { //

To handle this problem, the compiler generates a bridge method with the preceding signature
that calls the String version. Thus, if you examine the class file for Gen2 by using javap, you
will see the following methods:

class Gen2 extends Genf{
Gen2 (java.lang.String) ;
java.lang.String getob () ;
java.lang.Object getob(); // bridge method

Chapter 14: Generics 353

As you can see, the bridge method has been included. (The comment was added by the author,
and not by javap.)

There is one last point to make about bridge methods. Notice that the only difference
between the two getob() methods is their return type. Normally, this would cause an error,
but because this does not occur in your source code, it does not cause a problem and is handled
correctly by the JVM.

Ambiguity Errors

The inclusion of generics gives rise to a new type of error that you must guard against:
ambiguity. Ambiguity errors occur when erasure causes two seemingly distinct generic
declarations to resolve to the same erased type, causing a conflict. Here is an example that
involves method overloading;:

// Ambiguity caused by erasure on
// overloaded methods.
class MyGenClass<T, Vs> {

T obl;

V ob2;

/...

// These two overloaded methods are ambiguous
// and will not compile.
void set (T o) {

obl = o;

1

void set (V o) {
ob2 = o;

}
}

Notice that MyGenClass declares two generic types: T and V. Inside MyGenClass, an
attempt is made to overload set() based on parameters of type T and V. This looks reasonable
because T and V appear to be different types. However, there are two ambiguity problems here.

First, as MyGenClass is written, there is no requirement that T and V actually be different
types. For example, it is perfectly correct (in principle) to construct a MyGenClass object as
shown here:

MyGenClass<String, String> obj = new MyGenClass<String, Strings> ()

In this case, both T and V will be replaced by String. This makes both versions of set()
identical, which is, of course, an error.

The second and more fundamental problem is that the type erasure of set() reduces both
versions to the following:

void set (Object o) { //

Thus, the overloading of set() as attempted in MyGenClass is inherently ambiguous.

354

Part I: The Java Language

Ambiguity errors can be tricky to fix. For example, if you know that V will always be some
type of String, you might try to fix MyGenClass by rewriting its declaration as shown here:

class MyGenClass<T, V extends String> { // almost OK!

This change causes MyGenClass to compile, and you can even instantiate objects like the
one shown here:

MyGenClass<Integer, String> x = new MyGenClass<Integer, Strings>();

This works because Java can accurately determine which method to call. However,
ambiguity returns when you try this line:

MyGenClass<String, String> x = new MyGenClass<String, String>();

In this case, since both T and V are String, which version of set() is to be called?

Frankly, in the preceding example, it would be much better to use two separate method
names, rather than trying to overload set(). Often, the solution to ambiguity involves the
restructuring of the code, because ambiguity often means that you have a conceptual error
in your design.

Some Generic Restrictions

There are a few restrictions that you need to keep in mind when using generics. They
involve creating objects of a type parameter, static members, exceptions, and arrays. Each is
examined here.

Type Parameters Can’t Be Instantiated
It is not possible to create an instance of a type parameter. For example, consider this class:

// Can't create an instance of T.
class Gen<T> {
T ob;
Gen() {
ob = new T(); // Illegal!!!
1
}

Here, it is illegal to attempt to create an instance of T. The reason should be easy to
understand: because T does not exist at run time, how would the compiler know what type
of object to create? Remember, erasure removes all type parameters during the compilation
process.

Restrictions on Static Members

No static member can use a type parameter declared by the enclosing class. For example, all
of the static members of this class are illegal:

class Wrong<T> {
// Wrong, no static variables of type T.
static T ob;

Chapter 14: Generics

// Wrong, no static method can use T.
static T getob() {

}

return ob;

// Wrong, no static method can access object

// of type T.
static void showob () {

System.out .println (ob) ;

Although you can’t declare static members that use a type parameter declared by the

enclosing class, you can declare static generic methods, which define their own type parameters,
as was done earlier in this chapter.

Generic Array Restrictions

There are two important generics restrictions that apply to arrays. First, you cannot instantiate
an array whose base type is a type parameter. Second, you cannot create an array of type-
specific generic references. The following short program shows both situations:

// Generics and arrays.
class Gen<T extends Numbers> {
T ob;

}

T vals[]l; // OK

Gen(T o, T[] nums) ({

}

ob = o;

// This statement is illegal.
// vals = new T[10]; // can't create an array of T

// But, this statement is OK.
vals = nums; // OK to assign reference to existent array

class GenArrays {
public static void main(String argsl[]) {

Integer n[] = { 1, 2, 3, 4, 5 };
Gen<Integer> i0b = new Gen<Integer> (50, n);

// Can't create an array of type-specific generic references.
// Gen<Integer> gens[] = new Gen<Integer>[10]; // Wrong!

// This is OK.
Gen<?> gens|[] = new Gen<?>[10]; // OK

355

356

Part I: The Java Language

As the program shows, it’s valid to declare a reference to an array of type T, as this line does:
T vals[]l; // OK

But, you cannot instantiate an array of T, as this commented-out line attempts:

// vals = new T[10]; // can't create an array of T

The reason you can’t create an array of T is that T does not exist at run time, so there is no
way for the compiler to know what type of array to actually create.

However, you can pass a reference to a type-compatible array to Gen() when an object
is created and assign that reference to vals, as the program does in this line:

vals = nums; // OK to assign reference to existent array

This works because the array passed to Gen has a known type, which will be the same type
as T at the time of object creation.

Inside main(), notice that you can’t declare an array of references to a specific generic type.
That is, this line

// Gen<Integers> gens[] = new Gen<Integer>[10]; // Wrong!

won’t compile. Arrays of specific generic types simply aren’t allowed, because they can lead
to a loss of type safety.

You can create an array of references to a generic type if you use a wildcard, however,
as shown here:

Gen<?> gens|[] = new Gen<?>[10]; // OK

This approach is better than using an array of raw types, because at least some type checking
will still be enforced.

Generic Exception Restriction

A generic class cannot extend Throwable. This means that you cannot create generic exception
classes.

Final Thoughts on Generics

Generics are a powerful extension to Java because they streamline the creation of type-safe,
reusable code. Although the generic syntax can seem a bit overwhelming at first, it will
become second nature after you use it a while. Generic code will be a part of the future for
all Java programmers.

PART

The Java Library

CHAPTER 15
String Handling

CHAPTER 16
Exploring java.lang

CHaPTER 17

java.util Part 1: The
Collections Framework
CHAPTER 18

java.util Part 2: More
Utility Classes

CHAPTER 19
Input/Output: Exploring
java.io

CHAPTER 20

Networking

CHAPTER 21
The Applet Class

CHAPTER 22
Event Handling

CHAPTER 23

Introducing the AWT:
Working with Windows,
Graphics, and Text

CHAPTER 24

Using AWT Controls, Layout
Managers, and Menus

CHAPTER 25
Images

CHAPTER 26
The Concurrency Utilities

CHAPTER 27
NIO, Regular Expressions,
and Other Packages

This page intentionally left blank

CHAPTER
String Handling

it is described in detail. As is the case in most other programming languages, in Java
a string is a sequence of characters. But, unlike many other languages that implement
strings as character arrays, Java implements strings as objects of type String.

Implementing strings as built-in objects allows Java to provide a full complement of
features that make string handling convenient. For example, Java has methods to compare
two strings, search for a substring, concatenate two strings, and change the case of letters
within a string. Also, String objects can be constructed a number of ways, making it easy to
obtain a string when needed.

Somewhat unexpectedly, when you create a String object, you are creating a string that
cannot be changed. That is, once a String object has been created, you cannot change the
characters that comprise that string. At first, this may seem to be a serious restriction. However,
such is not the case. You can still perform all types of string operations. The difference is that
each time you need an altered version of an existing string, a new String object is created
that contains the modifications. The original string is left unchanged. This approach is used
because fixed, immutable strings can be implemented more efficiently than changeable ones.
For those cases in which a modifiable string is desired, Java provides two options: StringBuffer
and StringBuilder. Both hold strings that can be modified after they are created.

The String, StringBuffer, and StringBuilder classes are defined in java.lang. Thus, they
are available to all programs automatically. All are declared final, which means that none of
these classes may be subclassed. This allows certain optimizations that increase performance
to take place on common string operations. All three implement the CharSequence interface.

One last point: To say that the strings within objects of type String are unchangeable means
that the contents of the String instance cannot be changed after it has been created. However,
a variable declared as a String reference can be changed to point at some other String object
at any time.

ﬁ brief overview of Java’s string handling was presented in Chapter 7. In this chapter,

The String Constructors

The String class supports several constructors. To create an empty String, you call the default
constructor. For example,

String s = new String() ;

will create an instance of String with no characters in it.

351

358

Part Il: The Java Library

Frequently, you will want to create strings that have initial values. The String class
provides a variety of constructors to handle this. To create a String initialized by an array
of characters, use the constructor shown here:

String(char chars[])
Here is an example:

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars) ;

This constructor initializes s with the string “abc”.
You can specify a subrange of a character array as an initializer using the following
constructor:

String(char chars[], int startIndex, int numChars)

Here, startindex specifies the index at which the subrange begins, and numChars specifies
the number of characters to use. Here is an example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);

This initializes s with the characters cde.
You can construct a String object that contains the same character sequence as another
String object using this constructor:

String(String strObj)
Here, strObj is a String object. Consider this example:
// Construct one String from another.

class MakeString
public static void main(String argsl[]) {

char c[] = {'Jg', ra', 'v', 'a'};
String sl = new String(c);
String s2 = new String(sl);

System.out .println(sl) ;
System.out.println(s2) ;

The output from this program is as follows:

Java
Java

As you can see, s1 and s2 contain the same string.
Even though Java’s char type uses 16 bits to represent the basic Unicode character set,
the typical format for strings on the Internet uses arrays of 8-bit bytes constructed from the

Chapter 15: String Handling

ASCII character set. Because 8-bit ASCII strings are common, the String class provides
constructors that initialize a string when given a byte array. Their forms are shown here:

String(byte asciiChars|])
String(byte asciiChars|], int startIndex, int numChars)

Here, asciiChars specifies the array of bytes. The second form allows you to specify a
subrange. In each of these constructors, the byte-to-character conversion is done by using
the default character encoding of the platform. The following program illustrates these
constructors:

// Construct string from subset of char array.
class SubStringCons {
public static void main(String argsl[]) {
byte asciil[]l = {65, 66, 67, 68, 69, 70 };

String sl = new String(ascii) ;
System.out.println(sl) ;

String s2 = new String(ascii, 2, 3);
System.out.println(s2) ;

This program generates the following output:

ABCDEF
CDE

Extended versions of the byte-to-string constructors are also defined in which you can
specify the character encoding that determines how bytes are converted to characters. However,
most of the time, you will want to use the default encoding provided by the platform.

NOTE The contents of the array are copied whenever you create a String object from an array. If you
modify the contents of the array after you have created the string, the String will be unchanged.

You can construct a String from a StringBuffer by using the constructor shown here:

String(StringBuffer strBufObj)

String Constructors Added by J2SE 5

J2SE 5 added two constructors to String. The first supports the extended Unicode character
set and is shown here:

String(int codePoints|], int startIndex, int numChars)

Here, codePoints is an array that contains Unicode code points. The resulting string is
constructed from the range that begins at startIndex and runs for numChars.

NoOTE A discussion of Unicode code points and how they are handled by Java is found in Chapter 16.

359

360 Part Il1: The Java Library

The second new constructor supports the new StringBuilder class. It is shown here:
String(StringBuilder strBuildObyj)

This constructs a String from the StringBuilder passed in strBuildObj.

String Length

The length of a string is the number of characters that it contains. To obtain this value, call the
length() method, shown here:

int length()
The following fragment prints “3”, since there are three characters in the string s:

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars) ;
System.out.println(s.length()) ;

Special String Operations

Because strings are a common and important part of programming, Java has added special
support for several string operations within the syntax of the language. These operations
include the automatic creation of new String instances from string literals, concatenation of
multiple String objects by use of the + operator, and the conversion of other data types to a
string representation. There are explicit methods available to perform all of these functions,
but Java does them automatically as a convenience for the programmer and to add clarity.

String Literals

The earlier examples showed how to explicitly create a String instance from an array of
characters by using the new operator. However, there is an easier way to do this using a
string literal. For each string literal in your program, Java automatically constructs a String
object. Thus, you can use a string literal to initialize a String object. For example, the following
code fragment creates two equivalent strings:

char chars[] = { 'a', 'b', 'c' };
String sl = new String(chars) ;

String s2 = "abc"; // use string literal

Because a String object is created for every string literal, you can use a string literal any
place you can use a String object. For example, you can call methods directly on a quoted
string as if it were an object reference, as the following statement shows. It calls the length()
method on the string “abc”. As expected, it prints “3”.

System.out.println("abc".length()) ;

String Concatenation

In general, Java does not allow operators to be applied to String objects. The one exception
to this rule is the + operator, which concatenates two strings, producing a String object as the

Chapter 15: String Handling

result. This allows you to chain together a series of + operations. For example, the following
fragment concatenates three strings:

String age = "9";
String s = "He is " + age + " years old.";

System.out.println(s) ;

This displays the string “He is 9 years old.”

One practical use of string concatenation is found when you are creating very long strings.

Instead of letting long strings wrap around within your source code, you can break them into
smaller pieces, using the + to concatenate them. Here is an example:

// Using concatenation to prevent long lines.
class ConCat {
public static void main(String argsl([]) {
String longStr = "This could have been " +
"a very long line that would have " +
"wrapped around. But string concatenation " +
"prevents this.";

System.out .println (longStr) ;

}
}

String Concatenation with Other Data Types

You can concatenate strings with other types of data. For example, consider this slightly
different version of the earlier example:

int age = 9;
String s = "He is " + age + " years old.";
System.out.println(s) ;

In this case, age is an int rather than another String, but the output produced is the same
as before. This is because the int value in age is automatically converted into its string
representation within a String object. This string is then concatenated as before. The compiler
will convert an operand to its string equivalent whenever the other operand of the + is an
instance of String.

Be careful when you mix other types of operations with string concatenation expressions,
however. You might get surprising results. Consider the following:

String s = "four: " + 2 + 2;
System.out.println(s) ;

This fragment displays
four: 22
rather than the

four: 4

361

362

Part Il: The Java Library

that you probably expected. Here’s why. Operator precedence causes the concatenation of
“four” with the string equivalent of 2 to take place first. This result is then concatenated with
the string equivalent of 2 a second time. To complete the integer addition first, you must use
parentheses, like this:

String s = "four: " + (2 + 2);

Now s contains the string “four: 4”.

String Conversion and toString()

When Java converts data into its string representation during concatenation, it does so by
calling one of the overloaded versions of the string conversion method valueOf() defined
by String. valueOf£() is overloaded for all the simple types and for type Object. For the simple
types, valueOf() returns a string that contains the human-readable equivalent of the value
with which it is called. For objects, valueOf() calls the toString() method on the object. We
will look more closely at valueOf() later in this chapter. Here, let’s examine the toString()
method, because it is the means by which you can determine the string representation for
objects of classes that you create.

Every class implements toString() because it is defined by Object. However, the default
implementation of toString() is seldom sufficient. For most important classes that you create,
you will want to override toString() and provide your own string representations. Fortunately,
this is easy to do. The toString() method has this general form:

String toStringy()

To implement toString(), simply return a String object that contains the human-readable
string that appropriately describes an object of your class.

By overriding toString() for classes that you create, you allow them to be fully integrated
into Java’s programming environment. For example, they can be used in print() and println()
statements and in concatenation expressions. The following program demonstrates this by
overriding toString() for the Box class:

// Override toString() for Box class.
class Box {

double width;

double height;

double depth;

Box (double w, double h, double d) ({

width = w;
height = h;
depth = d;

}

public String toString() {
return "Dimensions are " + width + " by " +
depth + " by " + height + ".";

Chapter 15: String Handling 363

class toStringDemo {
public static void main(String argsl[]) {
Box b = new Box (10, 12, 14);
String s = "Box b: " + b; // concatenate Box object

System.out.println(b); // convert Box to string
System.out .println(s) ;

The output of this program is shown here:

Dimensions are 10.0 by 14.0 by 12.0
Box b: Dimensions are 10.0 by 14.0 by 12.0

As you can see, Box's toString() method is automatically invoked when a Box object
is used in a concatenation expression or in a call to println().

Character Extraction

The String class provides a number of ways in which characters can be extracted from a
String object. Each is examined here. Although the characters that comprise a string within
a String object cannot be indexed as if they were a character array, many of the String methods
employ an index (or offset) into the string for their operation. Like arrays, the string indexes
begin at zero.

charAt()

To extract a single character from a String, you can refer directly to an individual character
via the charAt() method. It has this general form:

char charAt(int where)

Here, where is the index of the character that you want to obtain. The value of where must be
nonnegative and specify a location within the string. charAt() returns the character at the
specified location. For example,

char ch;
ch = "abe".charAt (1) ;

assigns the value “b” to ch.

getChars()

If you need to extract more than one character at a time, you can use the getChars() method.
It has this general form:

void getChars(int sourceStart, int sourceEnd, char target|], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. Thus, the substring contains

364

Part Il: The Java Library

the characters from sourceStart through sourceEndt. The array that will receive the characters
is specified by target. The index within target at which the substring will be copied is passed
in targetStart. Care must be taken to assure that the target array is large enough to hold the
number of characters in the specified substring.

The following program demonstrates getChars():

class getCharsDemo {
public static void main(String argsl[]) {
String s = "This is a demo of the getChars method.";
int start = 10;
int end = 14;
char buf[] = new char[end - start];

s.getChars (start, end, buf, 0);
System.out.println (buf) ;

Here is the output of this program:

demo

getBytes()

There is an alternative to getChars() that stores the characters in an array of bytes. This method
is called getBytes(), and it uses the default character-to-byte conversions provided by the
platform. Here is its simplest form:

byte[] getBytes()

Other forms of getBytes() are also available. getBytes() is most useful when you
are exporting a String value into an environment that does not support 16-bit Unicode
characters. For example, most Internet protocols and text file formats use 8-bit ASCII for
all text interchange.

toCharArray()

If you want to convert all the characters in a String object into a character array, the easiest
way is to call toCharArray(). It returns an array of characters for the entire string. It has this
general form:

char[] toCharArray()

This function is provided as a convenience, since it is possible to use getChars() to achieve
the same result.

String Comparison

The String class includes several methods that compare strings or substrings within strings.
Each is examined here.

Chapter 15: String Handling

equals() and equalsignoreCase()
To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It returns
true if the strings contain the same characters in the same order, and false otherwise. The
comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase(). When
it compares two strings, it considers A-Z to be the same as a-z. It has this general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It, too, returns
true if the strings contain the same characters in the same order, and false otherwise.
Here is an example that demonstrates equals() and equalsIgnoreCase():

// Demonstrate equals() and equalsIgnoreCase() .
class equalsDemo {
public static void main(String args[]) {

String sl = "Hello";

String s2 = "Hello";

String s3 = "Good-bye";

String s4 = "HELLO";

System.out.println(sl + " equals " + s2 + " -> " +
sl.equals(s2)) ;

System.out.println(sl + " equals " + s3 + " -> " 4+
sl.equals(s3));

System.out.println(sl + " equals " + s4 + " -> " +
sl.equals(s4)) ;

System.out.println(sl + " equalsIgnoreCase " + s4 + " -> " 4

sl.equalsIgnoreCase(s4)) ;

The output from the program is shown here:

Hello equals Hello -> true

Hello equals Good-bye -> false
Hello equals HELLO -> false

Hello equalsIgnoreCase HELLO -> true

regionMatches()

The regionMatches() method compares a specific region inside a string with another specific
region in another string. There is an overloaded form that allows you to ignore case in such
comparisons. Here are the general forms for these two methods:

boolean regionMatches(int startIndex, String str2,
int str2StartIndex, int numChars)

365

366

Part Il: The Java Library

boolean regionMatches(boolean ignoreCase,
int startIndex, String str2,
int str2StartIndex, int numChars)

For both versions, startIndex specifies the index at which the region begins within the
invoking String object. The String being compared is specified by str2. The index at which
the comparison will start within str2 is specified by str2StartIndex. The length of the substring
being compared is passed in numChars. In the second version, if ignoreCase is true, the case
of the characters is ignored. Otherwise, case is significant.

startsWith() and endsWith()

String defines two routines that are, more or less, specialized forms of regionMatches().
The startsWith() method determines whether a given String begins with a specified string.
Conversely, endsWith() determines whether the String in question ends with a specified
string. They have the following general forms:

boolean startsWith(String str)
boolean endsWith(String str)

Here, str is the String being tested. If the string matches, true is returned. Otherwise, false
is returned. For example,

"Foobar".endsWith ("bar")
and
"Foobar".startsWith ("Foo")

are both true.
A second form of startsWith(), shown here, lets you specify a starting point:

boolean startsWith(String str, int startindex)

Here, startIndex specifies the index into the invoking string at which point the search will
begin. For example,

"Foobar".startsWith ("bar", 3)

returns true.

equals() Versus ==

It is important to understand that the equals() method and the == operator perform two

different operations. As just explained, the equals() method compares the characters inside
a String object. The == operator compares two object references to see whether they refer
to the same instance. The following program shows how two different String objects can

contain the same characters, but references to these objects will not compare as equal:

// equals() vs ==
class EqualsNotEqualTo {

Chapter 15: String Handling

public static void main(String args[]) {

String sl = "Hello";

String s2 = new String(sl);

System.out.println(sl + " equals " + s2 + " -> " +
sl.equals(s2)) ;

System.out.println(sl + " == " + s2 + " -> " 4+ (sl == s2));

}
}

The variable s1 refers to the String instance created by “Hello”. The object referred to by
s2 is created with s1 as an initializer. Thus, the contents of the two String objects are identical,
but they are distinct objects. This means that s1 and s2 do not refer to the same objects and
are, therefore, not ==, as is shown here by the output of the preceding example:

Hello equals Hello -> true
Hello == Hello -> false

compareTo()

Often, it is not enough to simply know whether two strings are identical. For sorting
applications, you need to know which is less than, equal to, or greater than the next. A string
is less than another if it comes before the other in dictionary order. A string is greater than
another if it comes after the other in dictionary order. The String method compareTo() serves
this purpose. It has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String. The result of the comparison
is returned and is interpreted, as shown here:

Value Meaning

Less than zero The invoking string is less than str.
Greater than zero The invoking string is greater than str.
Zero The two strings are equal.

Here is a sample program that sorts an array of strings. The program uses compareTo()
to determine sort ordering for a bubble sort:

// A bubble sort for Strings.
class SortString

static String arr[] = {
"Now" , n is n , "the n , n time n , n for" , "all n , n good" , ||men|| ,
"to", "come", "to", "the", "aid", "of", "their", "country"
}i
public static void main(String argsl[]) {
for(int j = 0; j < arr.length; j++) {
for(int 1 = j + 1; i < arr.length; i++) {

if (arr[i] .compareTo (arr[j]) < 0) {
String t = arr([j];

367

368 Part Il: The Java Library

arr[j] = arr[i];
arr[i] t;
}
}
System.out.println(arr([j]);
}
}
}

The output of this program is the list of words:

Now
aid
all
come
country
for
good
is
men
of
the
the
their
time
to

to

As you can see from the output of this example, compareTo() takes into account uppercase
and lowercase letters. The word “Now” came out before all the others because it begins with
an uppercase letter, which means it has a lower value in the ASCII character set.

If you want to ignore case differences when comparing two strings, use
compareTolgnoreCase(), as shown here:

int compareTolgnoreCase(String str)

This method returns the same results as compareTo(), except that case differences are ignored.
You might want to try substituting it into the previous program. After doing so, “Now”
will no longer be first.

Searching Strings

The String class provides two methods that allow you to search a string for a specified
character or substring:

* indexOf() Searches for the first occurrence of a character or substring.

¢ JastIndexOf() Searches for the last occurrence of a character or substring.

These two methods are overloaded in several different ways. In all cases, the methods
return the index at which the character or substring was found, or % on failure.

Chapter 15: String Handling 369

To search for the first occurrence of a character, use

int indexOf(int ch)

To search for the last occurrence of a character, use

int lastIndexOf(int ch)

Here, ch is the character being sought.
To search for the first or last occurrence of a substring, use

int indexOf(String str)
int lastIndexOf(String str)

Here, str specifies the substring.
You can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex)
int lastindexOf(int ch, int startIndex)

int indexOf(String str, int startIndex)
int lastIndexOf(String str, int startIndex)

Here, startIndex specifies the index at which point the search begins. For indexOf£(), the
search runs from startIndex to the end of the string. For lastIndexOf(), the search runs from

startIndex to zero.

The following example shows how to use the various index methods to search inside

of Strings:

// Demonstrate indexOf () and lastIndexOf ().
class indexOfDemo {
public static void main(String argsl([]) {

String

System.
System.

System.
System.
System.
System.
System.
System.

System.

s =

out

out

out

out

out

out

out

out

"Now is the time for all good men " +
"to come to the aid of their country.";

.println(s) ;
out.

println("indexOf (£) = " +
s.indexOf ('t"));

.println("lastIndexOf (t) = " +

s.lastIndexOf('t'));

.println("indexOf (the) = " +

s.indexOf ("the")) ;

.println("lastIndexOf (the) = " +

s.lastIndexOf ("the")) ;

.println("indexOf (£, 10) = " +

s.indexOf ('t', 10));

.println("lastIndexOf (t, 60) = " +

s.lastIndexOf('t', 60));

.println("indexOf (the, 10) = " +

s.indexOf ("the", 10));

.println("lastIndexOf (the, 60) = " +

s.lastIndexOf ("the", 60));

310

Part Il: The Java Library

Here is the output of this program:

Now is the time for all good men to come to the aid of their country.
indexOf (t) = 7

lastIndexOf (t) 65
indexOf (the) =
lastIndexOf (th

7

e) 55
indexOf (t, 10) =

6

0)

1
lastIndexOf(t
indexOf (the,
lastIndexOf(the,

1
0) = 55
= 44
60) = 55

Modifying a String

Because String objects are immutable, whenever you want to modify a String, you must
either copy it into a StringBuffer or StringBuilder, or use one of the following String methods,
which will construct a new copy of the string with your modifications complete.

substring()

You can extract a substring using substring(). It has two forms. The first is
String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a copy
of the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending
index of the substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point.
The string returned contains all the characters from the beginning index, up to, but not
including, the ending index.

The following program uses substring() to replace all instances of one substring with
another within a string:

// Substring replacement.
class StringReplace
public static void main(String argsl[]) {

String org = "This is a test. This is, too.";
String search = "is";
String sub = "was";
String result = "";
int 1i;

do { // replace all matching substrings
System.out.println (org) ;
i = org.indexOf (search) ;
if(i 1= -1) |
result = org.substring(0, 1i);

Chapter 15: String Handling

result = result + sub;

result = result + org.substring(i + search.length()) ;
org = result;
}
} while(i '= -1);

The output from this program is shown here:

This is a test. This is, too.
Thwas is a test. This is, too.
Thwas was a test. This is, too.
Thwas was a test. Thwas is, too.
Thwas was a test. Thwas was, too.

concat()
You can concatenate two strings using concat(), shown here:

String concat(String str)

This method creates a new object that contains the invoking string with the contents
of str appended to the end. concat() performs the same function as +. For example,

String sl = "one";
String s2 = sl.concat ("two");

puts the string “onetwo” into s2. It generates the same result as the following sequence:

String sl = "one";
String s2 = sl + "two";
replace()

The replace() method has two forms. The first replaces all occurrences of one character in
the invoking string with another character. It has the following general form:

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by replacement.
The resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

puts the string “Hewwo” into s.
The second form of replace() replaces one character sequence with another. It has this
general form:

String replace(CharSequence original, CharSequence replacement)

This form was added by J2SE 5.

31

312

Part Il: The Java Library

trim()

The trim() method returns a copy of the invoking string from which any leading and trailing
whitespace has been removed. It has this general form:

String trim()
Here is an example:
String s = " Hello World ".trim() ;

This puts the string “Hello World” into s.

The trim() method is quite useful when you process user commands. For example, the
following program prompts the user for the name of a state and then displays that state’s
capital. It uses trim() to remove any leading or trailing whitespace that may have inadvertently
been entered by the user.

// Using trim() to process commands.
import java.io.*;

class UseTrim {
public static void main(String args([])
throws IOException
{

// create a BufferedReader using System.in
BufferedReader br = new

BufferedReader (new InputStreamReader (System.in)) ;
String str;

System.out.println ("Enter 'stop' to quit.");
System.out .println ("Enter State: ");

do {
str = br.readLine() ;
str = str.trim(); // remove whitespace

if (str.equals("Illinois"))
System.out.println("Capital is Springfield.");

else if(str.equals("Missouri"))
System.out.println("Capital is Jefferson City.");

else if (str.equals("California"))
System.out.println("Capital is Sacramento.") ;

else if (str.equals ("Washington"))
System.out.println("Capital is Olympia.");

//

} while(!str.equals("stop"));
}
}

Data Conversion Using valueOf()

The valueOf() method converts data from its internal format into a human-readable form.
It is a static method that is overloaded within String for all of Java’s built-in types so that each

Chapter 15: String Handling 373

type can be converted properly into a string. valueOf() is also overloaded for type Object,
so an object of any class type you create can also be used as an argument. (Recall that Object
is a superclass for all classes.) Here are a few of its forms:

static String valueOf(double num)
static String valueOf(long num)
static String valueOf(Object ob)
static String valueOf(char chars[])

As we discussed earlier, valueOf() is called when a string representation of some other
type of data is needed—for example, during concatenation operations. You can call this method
directly with any data type and get a reasonable String representation. All of the simple types
are converted to their common String representation. Any object that you pass to valueOf()
will return the result of a call to the object’s toString() method. In fact, you could just call
toString() directly and get the same result.

For most arrays, valueOf() returns a rather cryptic string, which indicates that it is an
array of some type. For arrays of char, however, a String object is created that contains the
characters in the char array. There is a special version of valueOf() that allows you to specify
a subset of a char array. It has this general form:

static String valueOf(char chars[], int startIndex, int numChars)

Here, chars is the array that holds the characters, startIndex is the index into the array of
characters at which the desired substring begins, and numChars specifies the length of the
substring.

Changing the Case of Characters Within a String

The method toLowerCase() converts all the characters in a string from uppercase to
lowercase. The toUpperCase() method converts all the characters in a string from lowercase
to uppercase. Nonalphabetical characters, such as digits, are unaffected. Here are the general
forms of these methods:

String toLowerCase()
String toUpperCase()

Both methods return a String object that contains the uppercase or lowercase equivalent
of the invoking String.
Here is an example that uses toLowerCase() and toUpperCase():

// Demonstrate toUpperCase () and toLowerCase() .

class ChangeCase {
public static void main(String argsl(])

{

String s = "This is a test.";

System.out.println("Original: " + s);

Part II:

314 The Java Library

String upper =
String lower =

System.out .println ("Uppercase:
System.out.println ("Lowercase: "

}
}

s.toUpperCase () ;
s.toLowerCase () ;

" + upper) ;
+ lower) ;

The output produced by the program is shown here:

Original: This is a test.
Uppercase: THIS IS A TEST.
Lowercase: this is a test.

Additional String Methods

In addition to those methods discussed earlier, String includes several other methods. These
are summarized in the following table. Notice that many were added by J2SE 5.

Method

Description

int codePointAt(int i)

Returns the Unicode code point at the location specified by i.
Added by J2SE 5.

int codePointBefore(int i)

Returns the Unicode code point at the location that precedes
that specified by i. Added by J2SE 5.

int codePointCount(int start, int end)

Returns the number of code points in the portion of the invoking
String that are between start and end-1. Added by J2SE 5.

boolean contains(CharSequence str)

Returns true if the invoking object contains the string specified
by str. Returns false, otherwise. Added by J2SE 5.

boolean contentEquals(CharSequence str)

Returns true if the invoking string contains the same string as
str. Otherwise, returns false. Added by J2SE 5.

boolean contentEquals(StringBuffer str)

Returns true if the invoking string contains the same string as
str. Otherwise, returns false.

static String format(String fmtstr,
Object ... args)

Returns a string formatted as specified by fmtstr. (See Chapter 18
for details on formatting.) Added by J2SE 5.

static String format(Locale loc,
String fmtstr,
Object ... args)

Returns a string forma